--- library_name: peft datasets: - tatsu-lab/alpaca - silk-road/alpaca-data-gpt4-chinese pipeline_tag: conversational base_model: internlm/internlm-7b ---
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
## Model internlm-7b-qlora-alpaca-enzh is fine-tuned from [InternLM-7B](https://huggingface.co./internlm/internlm-7b) with [alpaca en](https://huggingface.co./datasets/tatsu-lab/alpaca) / [zh](https://huggingface.co./datasets/silk-road/alpaca-data-gpt4-chinese) datasets by [XTuner](https://github.com/InternLM/xtuner). ## Quickstart ### Usage with XTuner CLI #### Installation ```shell pip install xtuner ``` #### Chat ```shell xtuner chat internlm/internlm-7b --adapter xtuner/internlm-7b-qlora-alpaca-enzh --prompt-template internlm_chat --system-template alpaca ``` #### Fine-tune Use the following command to quickly reproduce the fine-tuning results. ```shell xtuner train internlm_7b_qlora_alpaca_enzh_e3 ```