End of training
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlnet/xlnet-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: xlnet-base-cased
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlnet-base-cased
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.9234
|
23 |
+
- Accuracy: 0.8218
|
24 |
+
- Precision: 0.8189
|
25 |
+
- Recall: 0.8218
|
26 |
+
- Precision Macro: 0.7836
|
27 |
+
- Recall Macro: 0.7606
|
28 |
+
- Macro Fpr: 0.0159
|
29 |
+
- Weighted Fpr: 0.0152
|
30 |
+
- Weighted Specificity: 0.9756
|
31 |
+
- Macro Specificity: 0.9865
|
32 |
+
- Weighted Sensitivity: 0.8218
|
33 |
+
- Macro Sensitivity: 0.7606
|
34 |
+
- F1 Micro: 0.8218
|
35 |
+
- F1 Macro: 0.7664
|
36 |
+
- F1 Weighted: 0.8189
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 30
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
68 |
+
| 1.2613 | 1.0 | 643 | 0.7758 | 0.7676 | 0.7673 | 0.7676 | 0.5269 | 0.5129 | 0.0220 | 0.0212 | 0.9680 | 0.9824 | 0.7676 | 0.5129 | 0.7676 | 0.4819 | 0.7524 |
|
69 |
+
| 0.7364 | 2.0 | 1286 | 0.6755 | 0.8071 | 0.8088 | 0.8071 | 0.7425 | 0.6972 | 0.0174 | 0.0168 | 0.9751 | 0.9855 | 0.8071 | 0.6972 | 0.8071 | 0.7019 | 0.8013 |
|
70 |
+
| 0.6021 | 3.0 | 1929 | 0.8443 | 0.8064 | 0.8016 | 0.8064 | 0.7270 | 0.7262 | 0.0176 | 0.0169 | 0.9718 | 0.9852 | 0.8064 | 0.7262 | 0.8064 | 0.7229 | 0.8014 |
|
71 |
+
| 0.4361 | 4.0 | 2572 | 0.8850 | 0.8002 | 0.8001 | 0.8002 | 0.7167 | 0.7048 | 0.0180 | 0.0175 | 0.9731 | 0.9849 | 0.8002 | 0.7048 | 0.8002 | 0.7051 | 0.7971 |
|
72 |
+
| 0.3359 | 5.0 | 3215 | 1.1264 | 0.8017 | 0.7981 | 0.8017 | 0.6531 | 0.6681 | 0.0181 | 0.0174 | 0.9732 | 0.9850 | 0.8017 | 0.6681 | 0.8017 | 0.6459 | 0.7962 |
|
73 |
+
| 0.2827 | 6.0 | 3858 | 1.1471 | 0.7994 | 0.8092 | 0.7994 | 0.7389 | 0.6922 | 0.0183 | 0.0176 | 0.9686 | 0.9845 | 0.7994 | 0.6922 | 0.7994 | 0.7042 | 0.7952 |
|
74 |
+
| 0.1945 | 7.0 | 4501 | 1.1841 | 0.8149 | 0.8129 | 0.8149 | 0.7850 | 0.7598 | 0.0166 | 0.0160 | 0.9746 | 0.9860 | 0.8149 | 0.7598 | 0.8149 | 0.7667 | 0.8122 |
|
75 |
+
| 0.1286 | 8.0 | 5144 | 1.3231 | 0.8079 | 0.8105 | 0.8079 | 0.7630 | 0.7216 | 0.0171 | 0.0167 | 0.9757 | 0.9856 | 0.8079 | 0.7216 | 0.8079 | 0.7283 | 0.8067 |
|
76 |
+
| 0.1304 | 9.0 | 5787 | 1.3869 | 0.8102 | 0.8118 | 0.8102 | 0.7705 | 0.7603 | 0.0171 | 0.0165 | 0.9741 | 0.9856 | 0.8102 | 0.7603 | 0.8102 | 0.7570 | 0.8088 |
|
77 |
+
| 0.0875 | 10.0 | 6430 | 1.6901 | 0.7823 | 0.7932 | 0.7823 | 0.7601 | 0.7020 | 0.0199 | 0.0195 | 0.9680 | 0.9834 | 0.7823 | 0.7020 | 0.7823 | 0.7192 | 0.7817 |
|
78 |
+
| 0.1075 | 11.0 | 7073 | 1.6517 | 0.7978 | 0.8021 | 0.7978 | 0.7513 | 0.7567 | 0.0183 | 0.0178 | 0.9758 | 0.9849 | 0.7978 | 0.7567 | 0.7978 | 0.7470 | 0.7935 |
|
79 |
+
| 0.0632 | 12.0 | 7716 | 1.5290 | 0.8149 | 0.8184 | 0.8149 | 0.7746 | 0.7772 | 0.0167 | 0.0160 | 0.9738 | 0.9859 | 0.8149 | 0.7772 | 0.8149 | 0.7707 | 0.8150 |
|
80 |
+
| 0.0565 | 13.0 | 8359 | 1.5766 | 0.8064 | 0.8107 | 0.8064 | 0.7528 | 0.7628 | 0.0174 | 0.0169 | 0.9769 | 0.9856 | 0.8064 | 0.7628 | 0.8064 | 0.7537 | 0.8061 |
|
81 |
+
| 0.0504 | 14.0 | 9002 | 1.7548 | 0.8048 | 0.8100 | 0.8048 | 0.7569 | 0.7702 | 0.0174 | 0.0170 | 0.9765 | 0.9854 | 0.8048 | 0.7702 | 0.8048 | 0.7553 | 0.8046 |
|
82 |
+
| 0.0295 | 15.0 | 9645 | 1.7570 | 0.8102 | 0.8226 | 0.8102 | 0.7705 | 0.7611 | 0.0168 | 0.0165 | 0.9770 | 0.9858 | 0.8102 | 0.7611 | 0.8102 | 0.7610 | 0.8141 |
|
83 |
+
| 0.0338 | 16.0 | 10288 | 1.7394 | 0.8110 | 0.8138 | 0.8110 | 0.7639 | 0.7659 | 0.0168 | 0.0164 | 0.9775 | 0.9859 | 0.8110 | 0.7659 | 0.8110 | 0.7613 | 0.8100 |
|
84 |
+
| 0.0444 | 17.0 | 10931 | 1.7975 | 0.8118 | 0.8201 | 0.8118 | 0.7511 | 0.7610 | 0.0168 | 0.0163 | 0.9775 | 0.9859 | 0.8118 | 0.7610 | 0.8118 | 0.7457 | 0.8129 |
|
85 |
+
| 0.0397 | 18.0 | 11574 | 1.6921 | 0.8149 | 0.8203 | 0.8149 | 0.7540 | 0.7854 | 0.0165 | 0.0160 | 0.9780 | 0.9862 | 0.8149 | 0.7854 | 0.8149 | 0.7553 | 0.8130 |
|
86 |
+
| 0.0356 | 19.0 | 12217 | 1.6908 | 0.8273 | 0.8307 | 0.8273 | 0.7764 | 0.7992 | 0.0152 | 0.0147 | 0.9784 | 0.9870 | 0.8273 | 0.7992 | 0.8273 | 0.7814 | 0.8265 |
|
87 |
+
| 0.0306 | 20.0 | 12860 | 1.8374 | 0.8180 | 0.8208 | 0.8180 | 0.7635 | 0.7756 | 0.0162 | 0.0156 | 0.9771 | 0.9863 | 0.8180 | 0.7756 | 0.8180 | 0.7620 | 0.8166 |
|
88 |
+
| 0.0234 | 21.0 | 13503 | 1.7738 | 0.8195 | 0.8185 | 0.8195 | 0.7947 | 0.7602 | 0.0160 | 0.0155 | 0.9760 | 0.9864 | 0.8195 | 0.7602 | 0.8195 | 0.7713 | 0.8174 |
|
89 |
+
| 0.0091 | 22.0 | 14146 | 1.8537 | 0.8172 | 0.8167 | 0.8172 | 0.7732 | 0.7646 | 0.0163 | 0.0157 | 0.9764 | 0.9862 | 0.8172 | 0.7646 | 0.8172 | 0.7654 | 0.8143 |
|
90 |
+
| 0.0138 | 23.0 | 14789 | 1.8306 | 0.8102 | 0.8173 | 0.8102 | 0.7729 | 0.7569 | 0.0167 | 0.0165 | 0.9757 | 0.9857 | 0.8102 | 0.7569 | 0.8102 | 0.7625 | 0.8125 |
|
91 |
+
| 0.0213 | 24.0 | 15432 | 1.9363 | 0.8125 | 0.8149 | 0.8125 | 0.7777 | 0.7540 | 0.0168 | 0.0162 | 0.9739 | 0.9858 | 0.8125 | 0.7540 | 0.8125 | 0.7622 | 0.8115 |
|
92 |
+
| 0.0034 | 25.0 | 16075 | 1.9552 | 0.8156 | 0.8179 | 0.8156 | 0.7843 | 0.7583 | 0.0165 | 0.0159 | 0.9740 | 0.9860 | 0.8156 | 0.7583 | 0.8156 | 0.7657 | 0.8147 |
|
93 |
+
| 0.0028 | 26.0 | 16718 | 1.9404 | 0.8172 | 0.8163 | 0.8172 | 0.7884 | 0.7591 | 0.0164 | 0.0157 | 0.9747 | 0.9861 | 0.8172 | 0.7591 | 0.8172 | 0.7656 | 0.8137 |
|
94 |
+
| 0.0105 | 27.0 | 17361 | 1.9156 | 0.8180 | 0.8132 | 0.8180 | 0.7848 | 0.7575 | 0.0164 | 0.0156 | 0.9742 | 0.9861 | 0.8180 | 0.7575 | 0.8180 | 0.7667 | 0.8140 |
|
95 |
+
| 0.0048 | 28.0 | 18004 | 1.9104 | 0.8203 | 0.8196 | 0.8203 | 0.7877 | 0.7615 | 0.0160 | 0.0154 | 0.9758 | 0.9864 | 0.8203 | 0.7615 | 0.8203 | 0.7658 | 0.8175 |
|
96 |
+
| 0.0011 | 29.0 | 18647 | 1.9312 | 0.8203 | 0.8185 | 0.8203 | 0.7888 | 0.7600 | 0.0161 | 0.0154 | 0.9755 | 0.9864 | 0.8203 | 0.7600 | 0.8203 | 0.7664 | 0.8173 |
|
97 |
+
| 0.0004 | 30.0 | 19290 | 1.9234 | 0.8218 | 0.8189 | 0.8218 | 0.7836 | 0.7606 | 0.0159 | 0.0152 | 0.9756 | 0.9865 | 0.8218 | 0.7606 | 0.8218 | 0.7664 | 0.8189 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.35.2
|
103 |
+
- Pytorch 2.1.0+cu121
|
104 |
+
- Datasets 2.19.0
|
105 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 469304588
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581bcb6d55ad3761717697a9673d4aecdcffde9e210e1c224a1113530481433d
|
3 |
size 469304588
|
runs/Apr20_15-36-23_baf42f2e2df6/events.out.tfevents.1713627385.baf42f2e2df6.4203.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdeb5354b8bf7b2a453e49c6569f821b56c0302c5f106cf4704fc35153194a6b
|
3 |
+
size 43477
|