--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model-index: - name: tiny-llama results: [] --- # tiny-llama This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:| | No log | 0.0 | 1 | 4.1563 | 0.0225 | 0.0757 | 0.0225 | 0.0327 | 0.0617 | 0.4479 | 0.7566 | 0.9655 | 0.9325 | 0.0225 | 0.0617 | 0.0225 | 0.0149 | 0.0211 | ### Framework versions - PEFT 0.4.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2