Update README.md
Browse files
README.md
CHANGED
@@ -1,45 +1,60 @@
|
|
1 |
-
Model Information
|
2 |
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
This model
|
10 |
|
11 |
-
|
12 |
-
To run the model with adapters, you can use the following code:
|
13 |
-
(you need unsloth package)
|
14 |
-
import torch
|
15 |
-
from unsloth import FastLanguageModel
|
16 |
-
from unsloth.chat_templates import get_chat_template
|
17 |
|
18 |
-
|
19 |
|
20 |
-
model,
|
21 |
-
model_name=model_save_path,
|
22 |
-
max_seq_length=4096,
|
23 |
-
load_in_4bit=True,
|
24 |
-
)
|
25 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
26 |
|
27 |
-
|
28 |
-
tokenizer,
|
29 |
-
chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
|
30 |
-
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
|
31 |
-
)
|
32 |
|
33 |
-
|
34 |
-
inputs = tokenizer.apply_chat_template(
|
35 |
-
messages,
|
36 |
-
tokenize=True,
|
37 |
-
add_generation_prompt=True, # Must add for generation
|
38 |
-
return_tensors="pt",
|
39 |
-
).to("cuda")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
model-index:
|
3 |
+
- name: xmanii/llama-3-8b-instruct-bnb-4bit-persian
|
4 |
+
description: |
|
5 |
+
**Model Information**
|
6 |
|
7 |
+
**Developed by:** xmanii
|
8 |
+
**License:** Apache-2.0
|
9 |
+
**Finetuned from model:** unsloth/llama-3-8b-instruct-bnb-4bit
|
10 |
|
11 |
+
**Model Description**
|
12 |
|
13 |
+
This LLaMA model was fine-tuned on a unique Persian dataset of Alpaca chat conversations, consisting of approximately 8,000 rows. Our training process utilized two H100 GPUs, completing in just under 1 hour. We leveraged the power of Unsloth and Hugging Face's TRL library to accelerate our training process by 2x.
|
14 |
|
15 |
+
![Unsloth Made with Love](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png)
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
**Open-Source Contribution**
|
18 |
|
19 |
+
This model is open-source, and we invite the community to use and build upon our work. The fine-tuned LLaMA model is designed to improve Persian conversation capabilities, and we hope it will contribute to the advancement of natural language processing in the Persian language.
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
**Using Adapters with Unsloth**
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
To run the model with adapters, you can use the following code:
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
```python
|
26 |
+
import torch
|
27 |
+
from unsloth import FastLanguageModel
|
28 |
+
from unsloth.chat_templates import get_chat_template
|
29 |
|
30 |
+
model_save_path = "path to the download folder" # Adjust this path as needed
|
31 |
+
|
32 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
33 |
+
model_name=model_save_path,
|
34 |
+
max_seq_length=4096,
|
35 |
+
load_in_4bit=True,
|
36 |
+
)
|
37 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
38 |
+
|
39 |
+
tokenizer = get_chat_template(
|
40 |
+
tokenizer,
|
41 |
+
chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
|
42 |
+
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
|
43 |
+
)
|
44 |
+
|
45 |
+
messages = [{"from": "human", "value": "your prompt"}]
|
46 |
+
inputs = tokenizer.apply_chat_template(
|
47 |
+
messages,
|
48 |
+
tokenize=True,
|
49 |
+
add_generation_prompt=True, # Must add for generation
|
50 |
+
return_tensors="pt",
|
51 |
+
).to("cuda")
|
52 |
+
|
53 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=2048, use_cache=True)
|
54 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
55 |
+
print(response)
|
56 |
+
```
|
57 |
+
|
58 |
+
**Future Work**
|
59 |
+
|
60 |
+
We are working on quantizing the models and bringing them to ollama.
|