File size: 1,676 Bytes
28c7f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
base_model: bert-base-chinese
tags:
- generated_from_trainer
model-index:
- name: ntu_adl_span_selection_bert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ntu_adl_span_selection_bert

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co./bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0552
- Em Accuracy: 0.7607

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Em Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|
| 1.161         | 1.0   | 10857 | 1.2192          | 0.7029      |
| 0.7596        | 2.0   | 21714 | 1.3003          | 0.7338      |
| 0.551         | 3.0   | 32571 | 1.5081          | 0.7398      |
| 0.2034        | 4.0   | 43428 | 1.8194          | 0.7474      |
| 0.0762        | 5.0   | 54285 | 2.0552          | 0.7607      |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1