--- license: apache-2.0 base_model: nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat](https://huggingface.co./nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Accuracy: 0.9682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5179 | 0.9979 | 351 | 0.1549 | 0.9502 | | 0.3977 | 1.9986 | 703 | 0.1160 | 0.963 | | 0.3058 | 2.9936 | 1053 | 0.0955 | 0.9682 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1