--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3998 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1244 | 1.0 | 113 | 0.8034 | 0.72 | | 0.5318 | 2.0 | 226 | 0.5882 | 0.83 | | 0.3489 | 3.0 | 339 | 0.8427 | 0.8 | | 0.021 | 4.0 | 452 | 0.8284 | 0.8 | | 0.0944 | 5.0 | 565 | 0.6992 | 0.87 | | 0.0102 | 6.0 | 678 | 0.6557 | 0.88 | | 0.2053 | 7.0 | 791 | 0.5572 | 0.9 | | 0.0012 | 8.0 | 904 | 0.4284 | 0.9 | | 0.0953 | 9.0 | 1017 | 0.4035 | 0.9 | | 0.0001 | 10.0 | 1130 | 0.3998 | 0.9 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3