--- license: mit base_model: facebook/mbart-large-50 tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: mbart-neutralization results: [] --- # mbart-neutralization This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co./facebook/mbart-large-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0220 - Bleu: 98.2132 - Gen Len: 18.5417 ## Model description mBART-50 is a multilingual Sequence-to-Sequence model. It was introduced to show that multilingual translation models can be created through multilingual fine-tuning. Instead of fine-tuning on one direction, a pre-trained model is fine-tuned on many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below. Multilingual Denoising Pretraining: The model incorporates N languages by concatenating data: D = {D1, ..., DN } where each Di is a collection of monolingual documents in language i. The source documents are noised using two schemes, first randomly shuffling the original sentences' order, and second a novel in-filling scheme, where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text. 35% of each instance's words are masked by random sampling a span length according to a Poisson distribution (λ = 3.5). The decoder input is the original text with one position offset. A language id symbol LID is used as the initial token to predict the sentence. ## Intended uses & limitations mbart-large-50 is pre-trained model and primarily aimed at being fine-tuned on translation tasks. It can also be fine-tuned on other multilingual sequence-to-sequence tasks. See the model hub to look for fine-tuned versions. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 440 | 0.0490 | 96.2659 | 19.0104 | | 0.2462 | 2.0 | 880 | 0.0220 | 98.2132 | 18.5417 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2