File size: 700 Bytes
8e57b6f d71e838 ddf408a d71e838 8e57b6f 0ec8368 d71e838 8e57b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: mit
language:
- en
library_name: transformers
pipeline_tag: tabular-classification
inference: true
---
# My Model
This is a model for predicting issue resolution times based on various features. It uses an LSTM neural network for classification.
## How to use
```python
import tensorflow as tf
from keras.models import load_model
# Load the model
model = load_model("my_model.h5")
# Prepare your input data (example)
# X = ...
# Predict
predictions = model.predict(X)
Model Details
```
Framework: TensorFlow / Keras / Bert
Input features: Text and numerical features
Output: Duration category (short, medium, long)
Performance
Precision: 0.9969
Recall: 0.9985
F1 Score: 0.9977
""" |