File size: 8,327 Bytes
adc9aa0
2d3f123
 
adc9aa0
 
2d3f123
 
adc9aa0
 
 
 
 
 
 
 
d8c7361
adc9aa0
d8c7361
adc9aa0
d8c7361
adc9aa0
 
2d3f123
adc9aa0
 
 
d8c7361
adc9aa0
 
 
d8c7361
adc9aa0
 
 
d8c7361
adc9aa0
 
 
d8c7361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adc9aa0
 
 
d8c7361
adc9aa0
 
 
 
 
 
d8c7361
adc9aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c7361
 
 
 
 
 
 
adc9aa0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
language:
- eo
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_13_0
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-common_voice_13_0-eo-3
  results: []
---

# wav2vec2-common_voice_13_0-eo-3, an Esperanto speech recognizer

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on the [mozilla-foundation/common_voice_13_0](https://huggingface.co./datasets/mozilla-foundation/common_voice_13_0) Esperanto dataset.
It achieves the following results on the evaluation set:

- Loss: 0.2191
- Cer: 0.0208
- Wer: 0.0687

## Model description

See [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53).

## Intended uses & limitations

Speech recognition for Esperanto. The base model was pretrained and finetuned on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16KHz.

## Training and evaluation data

The training split was set to `train[:15000]` while the eval split was set to `validation[:1500]`.

## Training procedure

I used [`run_speech_recognition_ctc.py`](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) with the following `train.json` file passed to it:

```json
{
  "dataset_name": "mozilla-foundation/common_voice_13_0",
  "model_name_or_path": "facebook/wav2vec2-large-xlsr-53",
  "dataset_config_name": "eo",
  "output_dir": "./wav2vec2-common_voice_13_0-eo-3",
  "train_split_name": "train[:15000]",
  "eval_split_name": "validation[:1500]",
  "eval_metrics": ["cer", "wer"],
  "overwrite_output_dir": true,
  "preprocessing_num_workers": 8,
  "num_train_epochs": 100,
  "per_device_train_batch_size": 8,
  "gradient_accumulation_steps": 4,
  "gradient_checkpointing": true,
  "learning_rate": 3e-5,
  "warmup_steps": 500,
  "evaluation_strategy": "steps",
  "text_column_name": "sentence",
  "length_column_name": "input_length",
  "save_steps": 1000,
  "eval_steps": 1000,
  "layerdrop": 0.1,
  "save_total_limit": 3,
  "freeze_feature_encoder": true,
  "chars_to_ignore": "-!\"'(),.:;=?_`¨«¸»ʼ‑–—‘’“”„…‹›♫?",
  "chars_to_substitute": {
    "przy": "pŝe",
    "byn": "bin",
    "cx": "ĉ",
    "sx": "ŝ",
    "fi": "fi",
    "fl": "fl",
    "ǔ": "ŭ",
    "ñ": "nj",
    "á": "a",
    "é": "e",
    "ü": "ŭ",
    "y": "j",
    "qu": "ku"
  },
  "fp16": true,
  "group_by_length": true,
  "push_to_hub": true,
  "do_train": true,
  "do_eval": true
}
```

I went through the dataset to find non-speech characters, and these were placed in `chars_to_ignore`. In addition, there were character sequences that could be transcribed to Esperanto phonemes, and these were placed as a dictionary in `chars_to_substitute`. This required adding such an argument to the program:

```py
def dict_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)

@dataclass
class DataTrainingArguments:
  ...
    chars_to_substitute: Optional[Dict[str, str]] = dict_field(
        default=None,
        metadata={"help": "A dict of characters to replace."},
    )

```

Then I copied `remove_special_characters` to do the actual substitution:

```py
    def remove_special_characters(batch):
        text = batch[text_column_name]
        if chars_to_ignore_regex is not None:
            text = re.sub(chars_to_ignore_regex, "", batch[text_column_name])
        batch["target_text"] = text.lower() + " "
        return batch

    def substitute_characters(batch):
        text: str = batch["target_text"]
        if data_args.chars_to_substitute is not None:
            for k, v in data_args.chars_to_substitute.items():
                text.replace(k, v)
        batch["target_text"] = text.lower()
        return batch

    with training_args.main_process_first(desc="dataset map special characters removal"):
        raw_datasets = raw_datasets.map(
            remove_special_characters,
            remove_columns=[text_column_name],
            desc="remove special characters from datasets",
        )

    with training_args.main_process_first(desc="dataset map special characters substitute"):
        raw_datasets = raw_datasets.map(
            substitute_characters,
            desc="substitute special characters in datasets",
        )
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- layerdrop: 0.1
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Cer    | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
| 2.6416        | 2.13  | 1000  | 0.1541 | 0.8599          | 0.6449 |
| 0.2633        | 4.27  | 2000  | 0.0335 | 0.1897          | 0.1431 |
| 0.1739        | 6.4   | 3000  | 0.0289 | 0.1732          | 0.1145 |
| 0.1378        | 8.53  | 4000  | 0.0276 | 0.1729          | 0.1066 |
| 0.1172        | 10.67 | 5000  | 0.0268 | 0.1773          | 0.1019 |
| 0.1049        | 12.8  | 6000  | 0.0255 | 0.1701          | 0.0937 |
| 0.0951        | 14.93 | 7000  | 0.0253 | 0.1718          | 0.0933 |
| 0.0851        | 17.07 | 8000  | 0.0239 | 0.1787          | 0.0834 |
| 0.0809        | 19.2  | 9000  | 0.0235 | 0.1802          | 0.0835 |
| 0.0756        | 21.33 | 10000 | 0.0239 | 0.1784          | 0.0855 |
| 0.0708        | 23.47 | 11000 | 0.0235 | 0.1748          | 0.0824 |
| 0.0657        | 25.6  | 12000 | 0.0228 | 0.1830          | 0.0796 |
| 0.0605        | 27.73 | 13000 | 0.0230 | 0.1896          | 0.0798 |
| 0.0583        | 29.87 | 14000 | 0.0224 | 0.1889          | 0.0778 |
| 0.0608        | 32.0  | 15000 | 0.0223 | 0.1849          | 0.0757 |
| 0.0556        | 34.13 | 16000 | 0.0223 | 0.1872          | 0.0767 |
| 0.0534        | 36.27 | 17000 | 0.0221 | 0.1893          | 0.0751 |
| 0.0523        | 38.4  | 18000 | 0.0218 | 0.1925          | 0.0729 |
| 0.0494        | 40.53 | 19000 | 0.0221 | 0.1957          | 0.0745 |
| 0.0475        | 42.67 | 20000 | 0.0217 | 0.1961          | 0.0740 |
| 0.048         | 44.8  | 21000 | 0.0214 | 0.1957          | 0.0714 |
| 0.0459        | 46.93 | 22000 | 0.0215 | 0.1968          | 0.0717 |
| 0.0435        | 49.07 | 23000 | 0.0217 | 0.2008          | 0.0717 |
| 0.0428        | 51.2  | 24000 | 0.0212 | 0.1991          | 0.0696 |
| 0.0418        | 53.33 | 25000 | 0.0215 | 0.2034          | 0.0714 |
| 0.0404        | 55.47 | 26000 | 0.0210 | 0.2014          | 0.0684 |
| 0.0394        | 57.6  | 27000 | 0.0210 | 0.2050          | 0.0681 |
| 0.0399        | 59.73 | 28000 | 0.0211 | 0.2039          | 0.0700 |
| 0.0389        | 61.87 | 29000 | 0.0214 | 0.2091          | 0.0694 |
| 0.038         | 64.0  | 30000 | 0.0210 | 0.2100          | 0.0702 |
| 0.0361        | 66.13 | 31000 | 0.0215 | 0.2119          | 0.0703 |
| 0.0359        | 68.27 | 32000 | 0.0213 | 0.2108          | 0.0714 |
| 0.0354        | 70.4  | 33000 | 0.0211 | 0.2120          | 0.0699 |
| 0.0364        | 72.53 | 34000 | 0.0211 | 0.2128          | 0.0688 |
| 0.0361        | 74.67 | 35000 | 0.0212 | 0.2134          | 0.0694 |
| 0.0332        | 76.8  | 36000 | 0.0210 | 0.2176          | 0.0698 |
| 0.0341        | 78.93 | 37000 | 0.0208 | 0.2170          | 0.0688 |
| 0.032         | 81.07 | 38000 | 0.0209 | 0.2157          | 0.0686 |
| 0.0318        | 83.33 | 39000 | 0.0209 | 0.2166          | 0.0685 |
| 0.0325        | 85.47 | 40000 | 0.0209 | 0.2172          | 0.0687 |
| 0.0316        | 87.6  | 41000 | 0.0208 | 0.2181          | 0.0678 |
| 0.0302        | 89.73 | 42000 | 0.0208 | 0.2171          | 0.0679 |
| 0.0318        | 91.87 | 43000 | 0.0211 | 0.2179          | 0.0702 |
| 0.0314        | 94.0  | 44000 | 0.0208 | 0.2186          | 0.0690 |
| 0.0309        | 96.13 | 45000 | 0.0210 | 0.2193          | 0.0696 |
| 0.031         | 98.27 | 46000 | 0.0208 | 0.2191          | 0.0686 |


### Framework versions

- Transformers 4.29.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3