update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-common_voice_13_0-eo-10_1
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_13_0
|
17 |
+
type: common_voice_13_0
|
18 |
+
config: eo
|
19 |
+
split: validation
|
20 |
+
args: eo
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.053735309652713587
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-common_voice_13_0-eo-10_1
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10) on the common_voice_13_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0391
|
35 |
+
- Cer: 0.0098
|
36 |
+
- Wer: 0.0537
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 500
|
64 |
+
- num_epochs: 5
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|
70 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
71 |
+
| 0.1142 | 0.22 | 1000 | 0.0483 | 0.0126 | 0.0707 |
|
72 |
+
| 0.1049 | 0.44 | 2000 | 0.0474 | 0.0123 | 0.0675 |
|
73 |
+
| 0.0982 | 0.67 | 3000 | 0.0471 | 0.0120 | 0.0664 |
|
74 |
+
| 0.092 | 0.89 | 4000 | 0.0459 | 0.0117 | 0.0640 |
|
75 |
+
| 0.0847 | 1.11 | 5000 | 0.0459 | 0.0115 | 0.0631 |
|
76 |
+
| 0.0837 | 1.33 | 6000 | 0.0453 | 0.0113 | 0.0624 |
|
77 |
+
| 0.0803 | 1.56 | 7000 | 0.0443 | 0.0109 | 0.0598 |
|
78 |
+
| 0.0826 | 1.78 | 8000 | 0.0441 | 0.0110 | 0.0604 |
|
79 |
+
| 0.0809 | 2.0 | 9000 | 0.0437 | 0.0110 | 0.0605 |
|
80 |
+
| 0.0728 | 2.22 | 10000 | 0.0451 | 0.0109 | 0.0597 |
|
81 |
+
| 0.0707 | 2.45 | 11000 | 0.0444 | 0.0108 | 0.0591 |
|
82 |
+
| 0.0698 | 2.67 | 12000 | 0.0442 | 0.0105 | 0.0576 |
|
83 |
+
| 0.0981 | 2.89 | 13000 | 0.0411 | 0.0104 | 0.0572 |
|
84 |
+
| 0.0928 | 3.11 | 14000 | 0.0413 | 0.0102 | 0.0561 |
|
85 |
+
| 0.0927 | 3.34 | 15000 | 0.0410 | 0.0102 | 0.0565 |
|
86 |
+
| 0.0886 | 3.56 | 16000 | 0.0402 | 0.0102 | 0.0558 |
|
87 |
+
| 0.091 | 3.78 | 17000 | 0.0400 | 0.0101 | 0.0553 |
|
88 |
+
| 0.0888 | 4.0 | 18000 | 0.0398 | 0.0100 | 0.0546 |
|
89 |
+
| 0.0885 | 4.23 | 19000 | 0.0395 | 0.0099 | 0.0542 |
|
90 |
+
| 0.0869 | 4.45 | 20000 | 0.0394 | 0.0099 | 0.0540 |
|
91 |
+
| 0.0844 | 4.67 | 21000 | 0.0393 | 0.0098 | 0.0539 |
|
92 |
+
| 0.0882 | 4.89 | 22000 | 0.0391 | 0.0098 | 0.0537 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.29.2
|
98 |
+
- Pytorch 2.0.1+cu117
|
99 |
+
- Datasets 2.12.0
|
100 |
+
- Tokenizers 0.13.3
|