update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: mms-common_voice_13_0-eo-1
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# mms-common_voice_13_0-eo-1
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [patrickvonplaten/mms-300m](https://huggingface.co/patrickvonplaten/mms-300m) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2262
|
19 |
+
- Cer: 0.0208
|
20 |
+
- Wer: 0.0672
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 100
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
|
55 |
+
| 2.3129 | 2.13 | 1000 | 0.0580 | 0.5042 | 0.2703 |
|
56 |
+
| 0.2251 | 4.27 | 2000 | 0.0295 | 0.1782 | 0.1198 |
|
57 |
+
| 0.1462 | 6.4 | 3000 | 0.0265 | 0.1635 | 0.1019 |
|
58 |
+
| 0.1162 | 8.53 | 4000 | 0.0248 | 0.1619 | 0.0931 |
|
59 |
+
| 0.0988 | 10.67 | 5000 | 0.0249 | 0.1654 | 0.0940 |
|
60 |
+
| 0.0904 | 12.8 | 6000 | 0.0242 | 0.1702 | 0.0845 |
|
61 |
+
| 0.0813 | 14.93 | 7000 | 0.0239 | 0.1658 | 0.0846 |
|
62 |
+
| 0.074 | 17.09 | 8000 | 0.0240 | 0.1763 | 0.0793 |
|
63 |
+
| 0.0692 | 19.22 | 9000 | 0.0243 | 0.1768 | 0.0835 |
|
64 |
+
| 0.0652 | 21.36 | 10000 | 0.0237 | 0.1812 | 0.0797 |
|
65 |
+
| 0.0593 | 23.5 | 11000 | 0.0221 | 0.1810 | 0.0750 |
|
66 |
+
| 0.0547 | 25.63 | 12000 | 0.0233 | 0.1835 | 0.0794 |
|
67 |
+
| 0.0514 | 27.76 | 13000 | 0.0224 | 0.1828 | 0.0761 |
|
68 |
+
| 0.0488 | 29.9 | 14000 | 0.0224 | 0.1844 | 0.0766 |
|
69 |
+
| 0.0478 | 32.03 | 15000 | 0.0226 | 0.1910 | 0.0769 |
|
70 |
+
| 0.0459 | 34.16 | 16000 | 0.0239 | 0.1965 | 0.0831 |
|
71 |
+
| 0.0429 | 36.3 | 17000 | 0.0220 | 0.2000 | 0.0760 |
|
72 |
+
| 0.0443 | 38.43 | 18000 | 0.0228 | 0.2039 | 0.0774 |
|
73 |
+
| 0.0398 | 40.56 | 19000 | 0.0219 | 0.1981 | 0.0755 |
|
74 |
+
| 0.0408 | 42.7 | 20000 | 0.0239 | 0.2053 | 0.0776 |
|
75 |
+
| 0.0406 | 44.83 | 21000 | 0.0221 | 0.2050 | 0.0740 |
|
76 |
+
| 0.0383 | 46.96 | 22000 | 0.0224 | 0.2128 | 0.0733 |
|
77 |
+
| 0.0379 | 49.1 | 23000 | 0.0220 | 0.2110 | 0.0731 |
|
78 |
+
| 0.0369 | 51.23 | 24000 | 0.0220 | 0.2145 | 0.0745 |
|
79 |
+
| 0.0341 | 53.36 | 25000 | 0.0222 | 0.2146 | 0.0725 |
|
80 |
+
| 0.0322 | 55.5 | 26000 | 0.0216 | 0.2130 | 0.0710 |
|
81 |
+
| 0.0316 | 57.63 | 27000 | 0.0222 | 0.2134 | 0.0716 |
|
82 |
+
| 0.0324 | 59.76 | 28000 | 0.0222 | 0.2172 | 0.0731 |
|
83 |
+
| 0.0315 | 61.9 | 29000 | 0.0228 | 0.2207 | 0.0745 |
|
84 |
+
| 0.0294 | 64.03 | 30000 | 0.0218 | 0.2183 | 0.0717 |
|
85 |
+
| 0.028 | 66.16 | 31000 | 0.0214 | 0.2185 | 0.0696 |
|
86 |
+
| 0.0263 | 68.3 | 32000 | 0.0215 | 0.2167 | 0.0696 |
|
87 |
+
| 0.0299 | 70.43 | 33000 | 0.0217 | 0.2201 | 0.0709 |
|
88 |
+
| 0.0273 | 72.56 | 34000 | 0.0222 | 0.2164 | 0.0724 |
|
89 |
+
| 0.0269 | 74.7 | 35000 | 0.0220 | 0.2240 | 0.0693 |
|
90 |
+
| 0.0264 | 76.92 | 36000 | 0.2220 | 0.0218 | 0.0704 |
|
91 |
+
| 0.0257 | 79.05 | 37000 | 0.2229 | 0.0217 | 0.0688 |
|
92 |
+
| 0.0251 | 81.19 | 38000 | 0.2263 | 0.0215 | 0.0694 |
|
93 |
+
| 0.0245 | 83.32 | 39000 | 0.2253 | 0.0210 | 0.0673 |
|
94 |
+
| 0.0243 | 85.45 | 40000 | 0.2264 | 0.0215 | 0.0692 |
|
95 |
+
| 0.0236 | 87.59 | 41000 | 0.2261 | 0.0217 | 0.0689 |
|
96 |
+
| 0.0225 | 89.72 | 42000 | 0.2265 | 0.0212 | 0.0680 |
|
97 |
+
| 0.023 | 91.85 | 43000 | 0.2265 | 0.0210 | 0.0674 |
|
98 |
+
| 0.0217 | 93.99 | 44000 | 0.2265 | 0.0209 | 0.0677 |
|
99 |
+
| 0.022 | 96.12 | 45000 | 0.2254 | 0.0211 | 0.0685 |
|
100 |
+
| 0.0219 | 98.25 | 46000 | 0.2262 | 0.0208 | 0.0672 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.29.1
|
106 |
+
- Pytorch 2.0.1+cu118
|
107 |
+
- Datasets 2.12.0
|
108 |
+
- Tokenizers 0.13.3
|