File size: 6,226 Bytes
2223dda
 
690f390
 
80a2730
 
690f390
 
 
2223dda
 
 
 
 
 
690f390
2223dda
 
 
 
 
 
 
690f390
2223dda
690f390
 
 
 
 
 
 
2223dda
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
 
 
 
 
690f390
2223dda
 
 
 
 
690f390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223dda
 
 
 
 
 
 
690f390
2223dda
 
 
 
 
690f390
 
 
2223dda
690f390
2223dda
690f390
 
2223dda
690f390
2223dda
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
690f390
2223dda
690f390
2223dda
 
 
690f390
2223dda
 
 
690f390
2223dda
690f390
2223dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690f390
2223dda
 
 
690f390
2223dda
 
 
 
 
 
 
690f390
2223dda
 
 
690f390
2223dda
 
 
 
 
 
 
 
 
 
 
690f390
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
library_name: transformers
tags:
- trainer
datasets:
- xavierwoon/cestertest
- xavierwoon/cestereval
base_model:
- google-bert/bert-base-uncased
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

Cesterrewards is a Bert model that is able to predict the code coverage of Libcester unit test cases.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

<!-- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. -->

- **Developed by:** Xavier Woon
<!-- - **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed] -->
- **Model type:** Bert
<!-- - **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed] -->
- **Finetuned from model [optional]:** google-bert/bert-base-uncased

<!-- ### Model Sources [optional]

Provide the basic links for the model.

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed] -->

<!-- ## Uses -->

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

<!-- ### Direct Use -->

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

<!-- [More Information Needed] -->

<!-- ### Downstream Use [optional] -->

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

<!-- [More Information Needed] -->

<!-- ### Out-of-Scope Use -->

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

<!-- [More Information Needed] -->

<!-- ## Bias, Risks, and Limitations -->

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Expanding the dataset will help increase the accuracy and robustness of the model, and improve code coverage predictions based on real life scenarios.

## How to Get Started with the Model

Use the code below to get started with the model.

```py
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

reward_name = "xavierwoon/cesterrewards"
reward_model = AutoModelForSequenceClassification.from_pretrained(reward_name)
tokenizer = AutoTokenizer.from_pretrained(reward_name)

# Change the prompt to sample unit test cases in Libcester format
prompt = """
CESTER_TEST(create_stack, test_instance,
{
    struct Stack stack;
    initStack(&stack);
    cester_assert_equal(stack.top, -1);
})
"""

inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Put the model in evaluation mode
reward_model.eval()

# Perform inference to get the reward score
with torch.no_grad():
    outputs = reward_model(**inputs)
reward_score = outputs.logits.item()  # Extract the scalar value

print("Expected Code Coverage:", reward_score)
```

<!-- [More Information Needed] -->

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

Training Data was created based on Data Structures and Algorithm (DSA) codes created using ChatGPT. It would also create corresponding Cester test cases. After testing the code coverage, it was added to the dataset under `score`.

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

1. Prompt GPT for sample DSA C code
2. Prompt GPT for Libcester unit test cases with 100% code coverage
3. Test generated test cases for code coverage and note down

<!-- #### Preprocessing [optional]

[More Information Needed]
 -->

<!-- #### Training Hyperparameters -->

<!-- - **Training regime:** [More Information Needed] fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

<!-- #### Speeds, Sizes, Times [optional] -->

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

<!-- [More Information Needed] -->

<!-- ## Evaluation -->

<!-- This section describes the evaluation protocols and provides the results. -->

<!-- ### Testing Data, Factors & Metrics -->

<!-- #### Testing Data -->

<!-- This should link to a Dataset Card if possible. -->

<!-- [More Information Needed] -->

<!-- #### Factors -->

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

<!-- [More Information Needed] -->

<!-- #### Metrics -->

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

<!-- [More Information Needed] -->

<!-- ### Results -->

<!-- [More Information Needed] -->

<!-- #### Summary -->



<!-- ## Model Examination [optional] -->

<!-- Relevant interpretability work for the model goes here -->

<!-- [More Information Needed] -->

<!-- ## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional] -->

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

<!-- **BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional] -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

<!-- [More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed] -->