CocoRoF commited on
Commit
32d895f
·
verified ·
1 Parent(s): 3d200e5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-1.5B
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: plateer_classifier_test
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # plateer_classifier_test
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on [x2bee/plateer_category_data](https://huggingface.co/datasets/x2bee/plateer_category_data).
20
+ It achieves the following results on the evaluation set:
21
+ - [MLflow Result(https://polar-mlflow.x2bee.com/#/experiments/27/runs/baa7269894b14f91b8a8ea3822474476)]
22
+ - Loss: 0.3242
23
+ - Accuracy: 0.8997
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 4
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 128
50
+ - total_eval_batch_size: 32
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 10000
54
+ - num_epochs: 1
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
60
+ |:-------------:|:------:|:------:|:---------------:|:--------:|
61
+ | 0.5023 | 0.0292 | 5000 | 0.5044 | 0.8572 |
62
+ | 0.4629 | 0.0585 | 10000 | 0.4571 | 0.8688 |
63
+ | 0.4254 | 0.0878 | 15000 | 0.4201 | 0.8770 |
64
+ | 0.4025 | 0.1171 | 20000 | 0.4016 | 0.8823 |
65
+ | 0.3635 | 0.3220 | 55000 | 0.3623 | 0.8905 |
66
+ | 0.3192 | 0.6441 | 110000 | 0.3242 | 0.8997 |
67
+
68
+ ### Framework versions
69
+
70
+ - PEFT 0.13.2
71
+ - Transformers 4.46.3
72
+ - Pytorch 2.2.1
73
+ - Datasets 3.1.0
74
+ - Tokenizers 0.20.3