Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Qwen/Qwen2.5-1.5B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: plateer_classifier_test
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# plateer_classifier_test
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on [x2bee/plateer_category_data](https://huggingface.co/datasets/x2bee/plateer_category_data).
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- [MLflow Result(https://polar-mlflow.x2bee.com/#/experiments/27/runs/baa7269894b14f91b8a8ea3822474476)]
|
22 |
+
- Loss: 0.3242
|
23 |
+
- Accuracy: 0.8997
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0002
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- num_devices: 4
|
48 |
+
- gradient_accumulation_steps: 4
|
49 |
+
- total_train_batch_size: 128
|
50 |
+
- total_eval_batch_size: 32
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 10000
|
54 |
+
- num_epochs: 1
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
60 |
+
|:-------------:|:------:|:------:|:---------------:|:--------:|
|
61 |
+
| 0.5023 | 0.0292 | 5000 | 0.5044 | 0.8572 |
|
62 |
+
| 0.4629 | 0.0585 | 10000 | 0.4571 | 0.8688 |
|
63 |
+
| 0.4254 | 0.0878 | 15000 | 0.4201 | 0.8770 |
|
64 |
+
| 0.4025 | 0.1171 | 20000 | 0.4016 | 0.8823 |
|
65 |
+
| 0.3635 | 0.3220 | 55000 | 0.3623 | 0.8905 |
|
66 |
+
| 0.3192 | 0.6441 | 110000 | 0.3242 | 0.8997 |
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- PEFT 0.13.2
|
71 |
+
- Transformers 4.46.3
|
72 |
+
- Pytorch 2.2.1
|
73 |
+
- Datasets 3.1.0
|
74 |
+
- Tokenizers 0.20.3
|