--- base_model: NousResearch/Meta-Llama-3.1-8B library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3.1-8B load_in_4bit: true strict: false chat_template: llama3 datasets: - path: winglian/pirate-ultrachat-10k type: chat_template message_field_role: role message_field_content: content dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: qlora lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_modules_to_save: - embed_tokens - lm_head peft_use_dora: true wandb_project: pirate-ultrachat-llama31 wandb_entity: axolotl-ai gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false bf16: true tf32: true gradient_checkpointing: true logging_steps: 1 flash_attention: true warmup_ration: 0.1 evals_per_epoch: 1 saves_per_epoch: 1 weight_decay: 0.0 deepspeed: deepspeed_configs/zero2.json special_tokens: pad_token: "<|finetune_right_pad_id|>" ```

# outputs/lora-out This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B](https://huggingface.co./NousResearch/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6022 | 0.0202 | 1 | 1.5845 | | 1.2173 | 0.9899 | 49 | 1.1328 | | 0.9676 | 1.9798 | 98 | 1.1247 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1