File size: 3,004 Bytes
0602cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
base_model: NousResearch/Meta-Llama-3.1-8B
library_name: peft
license: llama3.1
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: NousResearch/Meta-Llama-3.1-8B

load_in_4bit: true
strict: false

chat_template: llama3
datasets:
  - path: winglian/pirate-ultrachat-10k
    type: chat_template
    message_field_role: role
    message_field_content: content
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: qlora
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
  - embed_tokens
  - lm_head
peft_use_dora: true

wandb_project: pirate-ultrachat-llama31
wandb_entity: axolotl-ai

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
bf16: true
tf32: true

gradient_checkpointing: true
logging_steps: 1
flash_attention: true

warmup_ration: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: deepspeed_configs/zero2.json
special_tokens:
  pad_token: "<|finetune_right_pad_id|>"

```

</details><br>

# outputs/lora-out

This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B](https://huggingface.co./NousResearch/Meta-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1247

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6022        | 0.0202 | 1    | 1.5845          |
| 1.2173        | 0.9899 | 49   | 1.1328          |
| 0.9676        | 1.9798 | 98   | 1.1247          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1