--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 459779f2-cbce-4ec0-b11c-1dcdf92498d8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2-0.5B batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - 745d2d05aaed18f4_train_data.json ds_type: json format: custom path: /workspace/input_data/745d2d05aaed18f4_train_data.json type: field_input: pos field_instruction: task field_output: query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_steps: 20 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/459779f2-cbce-4ec0-b11c-1dcdf92498d8 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 2500 micro_batch_size: 4 model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/configs pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 40 save_total_limit: 1 sequence_len: 2048 tokenizer_type: Qwen2TokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: Qwen/Qwen2-0.5B-/workspace/input_data/745d2d05aaed18f4_train_data.json wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# 459779f2-cbce-4ec0-b11c-1dcdf92498d8 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co./Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 14 - training_steps: 291 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 3.9660 | | 2.8207 | 0.0086 | 20 | 3.1038 | | 3.1247 | 0.0172 | 40 | 3.0989 | | 2.9411 | 0.0258 | 60 | 2.8986 | | 2.9915 | 0.0344 | 80 | 2.8742 | | 2.8038 | 0.0430 | 100 | 2.8405 | | 2.8518 | 0.0516 | 120 | 2.7728 | | 2.7079 | 0.0602 | 140 | 2.6985 | | 2.6076 | 0.0688 | 160 | 2.6416 | | 2.6172 | 0.0774 | 180 | 2.5695 | | 2.552 | 0.0860 | 200 | 2.5151 | | 2.5036 | 0.0946 | 220 | 2.4783 | | 2.4887 | 0.1032 | 240 | 2.4610 | | 2.4008 | 0.1118 | 260 | 2.4569 | | 2.424 | 0.1204 | 280 | 2.4560 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1