--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Ar - Rami results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 103.42342342342343 --- # Whisper Large Ar - Rami This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1317 - Wer: 103.4234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2845 | 0.16 | 100 | 0.2153 | 30.0541 | | 0.1417 | 0.32 | 200 | 0.1466 | 53.8018 | | 0.1446 | 0.48 | 300 | 0.1388 | 64.7568 | | 0.1326 | 0.64 | 400 | 0.1371 | 128.7568 | | 0.13 | 0.8 | 500 | 0.1317 | 103.4234 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2