File size: 2,094 Bytes
8b60cd4 4d5db99 8b60cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- it
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Italian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
args: 'config: it, split: test'
metrics:
- name: Wer
type: wer
value: 17.391605006569392
---
# Whisper Small Italian
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1185
- Wer: 17.3916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
<!-- - seed: 42 -->
- gradient_accumulation_steps: 1
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 954
<!-- - mixed_precision_training: Native AMP -->
### Training results
| Training Loss | Step | Validation Loss | Wer |
|:-------------:|:----:|:---------------:|:-------:|
| 1.4744 | 100 | 1.1852 | 117.6059 |
| 0.7241 | 200 | 0.7452 | 79.7386 |
| 0.3321 | 300 | 0.3215 | 21.0497 |
| 0.2930 | 400 | 0.3030 | 20.2129 |
| 0.2698 | 500 | 0.2982 | 19.7635 |
| 0.2453 | 600 | 0.2898 | 19.0097 |
| 0.2338 | 700 | 0.2768 | 18.7054 |
| 0.2402 | 800 | 0.2646 | 18.2214 |
| 0.2340 | 900 | 0.2581 | 17.3916 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2 |