weqweasdas commited on
Commit
fc1057c
1 Parent(s): 028c23e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -8,7 +8,6 @@
8
 
9
  The reward model is trained from the base model [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it).
10
 
11
- The training process is identical to [RM-Gemma-7B](https://huggingface.co/weqweasdas/RM-Gemma-7B) but with a max-length of 4096 thanks to more GPU resources.
12
 
13
  ## Model Details
14
 
@@ -48,11 +47,11 @@ We train the model for one epoch with a learning rate of 5e-6, batch size 256, c
48
 
49
  ```python
50
  from transformers import AutoTokenizer, pipeline
51
- rm_tokenizer = AutoTokenizer.from_pretrained("weqweasdas/RM-Gemma-7B-4096")
52
  device = 0 # accelerator.device
53
  rm_pipe = pipeline(
54
  "sentiment-analysis",
55
- model="weqweasdas/RM-Gemma-7B-4096",
56
  #device="auto",
57
  device=device,
58
  tokenizer=rm_tokenizer,
 
8
 
9
  The reward model is trained from the base model [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it).
10
 
 
11
 
12
  ## Model Details
13
 
 
47
 
48
  ```python
49
  from transformers import AutoTokenizer, pipeline
50
+ rm_tokenizer = AutoTokenizer.from_pretrained("weqweasdas/RM-Gemma-7B")
51
  device = 0 # accelerator.device
52
  rm_pipe = pipeline(
53
  "sentiment-analysis",
54
+ model="weqweasdas/RM-Gemma-7B",
55
  #device="auto",
56
  device=device,
57
  tokenizer=rm_tokenizer,