FAPM / examples /blip2_predict_names.py
wenkai's picture
Upload 32 files
a60ca6c verified
import os
import re
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
from lavis.processors import load_processor
from lavis.common.registry import registry
from torch.nn import functional as F
from lavis.models.base_model import all_gather_with_grad, concat_all_gather
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
from multiprocessing import Pool, Queue, Process
import difflib
import Levenshtein
# import obonet
# setup device to use
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# device = 'cpu'
def txt_map(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
for i in x:
if i in txt_dict:
x_.append(txt_dict[i])
else:
x_.append(i)
return x_
def levenshtein_sim(text, label):
all_s = []
for x in label:
s = 0
for y in text:
temp = Levenshtein.ratio(x, y)
if temp > s:
s = temp
all_s.append(s)
all_s = [round(i, 3) for i in all_s]
return all_s
def func(text, label):
all_s = []
for x in label:
s = 0
for y in text:
temp = Levenshtein.ratio(x, y)
if temp > s:
s = temp
all_s.append(s)
all_s = [round(i, 3) for i in all_s]
return all_s
def stage2_output(df_test):
config = {'arch': 'blip2_protein_opt', 'load_finetuned': False,
'pretrained': '/cluster/home/wenkai/LAVIS/lavis/output/BLIP2/Pretrain_stage2/20230926091/checkpoint_3.pth',
'finetuned': '', 'num_query_token': 32, 'opt_model': 'facebook/opt-2.7b', 'prompt': '',
'model_type': 'pretrain_protein_opt2.7b', 'load_pretrained': True, 'freeze_vit': True,
'max_protein_len': 600,
'max_txt_len': 25}
model_cls = registry.get_model_class(config['arch'])
model = model_cls.from_config(config)
model.to(device)
model.eval()
images = df_test['protein'].tolist()
n = len(images)
bsz = 12
iter = n // bsz + 1
for i in range(iter):
image = images[i*bsz: min(n, (i+1)*bsz)]
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
with model.maybe_autocast():
_, _, batch_tokens = model.visual_encoder(image)
image_embeds = model.ln_vision(batch_tokens.to(device), repr_layers=[model.vis_layers], return_contacts=True)["representations"][model.vis_layers].contiguous()
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = model.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_opt = model.opt_proj(query_output.last_hidden_state)
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(device)
model.opt_tokenizer.padding_side = "right"
text = ['' for i in range(len(image))]
opt_tokens = model.opt_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=model.max_txt_len,
).to(device)
inputs_embeds = model.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids)
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
num_txt = 5
return_num_txt = 2
with model.maybe_autocast():
outputs = model.opt_model.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, min_length=3,
max_length=30,
repetition_penalty=5., num_beams=num_txt, eos_token_id=50118,
length_penalty=1., num_return_sequences=return_num_txt, temperature=1.)
output_text = model.opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
output_text_ = []
for i in range(len(image)):
output_text_.append(';'.join(output_text[i * return_num_txt:(i + 1) * return_num_txt]))
with open('/cluster/home/wenkai/LAVIS/output/output_names.txt', 'a+') as f:
for i in range(len(image)):
f.write(image[i][1] + "|" + output_text_[i] + '\n')
def evaluate_score(data):
model_config = {'arch': 'blip2_protein', 'load_finetuned': False,
'pretrained': '/cluster/home/wenkai/LAVIS/lavis/output/BLIP2/Pretrain_stage1/20230925102/checkpoint_6.pth',
'finetuned': '', 'num_query_token': 32, 'prompt': '',
'model_type': 'pretrain', 'load_pretrained': True, 'freeze_vit': False,
'max_protein_len': 512, 'max_txt_len': 30}
model_cls = registry.get_model_class(model_config['arch'])
model = model_cls.from_config(model_config)
model = model.to(device)
model.eval()
# evaluate
t0 = time.time()
proteins = list(data['protein'])
txts = list(data['function'])
scores = []
for seq, txt in zip(proteins, txts):
image = [('protein1', seq)]
_, _, batch_tokens = model.visual_encoder(image)
image_embeds = \
model.ln_vision(batch_tokens.to(device), repr_layers=[30], return_contacts=True)["representations"][
30].contiguous()
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = model.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
use_cache=True,
return_dict=True,
)
image_feats = F.normalize(model.vision_proj(query_output.last_hidden_state), dim=-1)
image_feats_all = concat_all_gather(image_feats)
if type(txt) == str:
txt = eval(txt)
length = len(txt)
with torch.no_grad():
text_tokens = model.tokenizer(
txt,
padding="max_length",
truncation=True,
max_length=model.max_txt_len,
return_tensors="pt",
).to(device)
text_output = model.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
text_feat = F.normalize(
model.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
text_feat_all = concat_all_gather(text_feat)
sim_q2t = torch.matmul(image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)).squeeze()
sim_i2t, _ = sim_q2t.max(-1)
# print('sim_i2t: {}'.format(sim_i2t))
if length > 1:
scores.append(list(sim_i2t.detach().cpu().numpy()))
else:
scores.append([sim_i2t.item()])
print("model evaluate time: {}".format(time.time() - t0))
data['sim'] = scores
return data
# graph = obonet.read_obo("http://purl.obolibrary.org/obo/go.obo")
### Levenshtein similarity
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/raw_time_split/reviewed//test.csv', sep='|')
test['function'] = test['function'].apply(lambda x: x.lower())
if os.path.exists('/cluster/home/wenkai/LAVIS/output/output_names.txt'):
os.remove('/cluster/home/wenkai/LAVIS/output/output_names.txt')
print("stage 2 predict starting")
stage2_output(test)
print("stage 2 predict completed")
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/output_names.txt', sep='|', header=None, on_bad_lines='warn')
df_pred.columns = ['protein', 'function']
df_pred = df_pred.drop_duplicates()
df_pred['function'] = df_pred['function'].apply(lambda x: str(x).split(';'))
df_pred['function'] = df_pred['function'].apply(lambda x: [i.strip() for i in list(set(x))])
test.columns
test_g = test.groupby(['protein']).agg({'function': lambda x: list(x)}).reset_index()
test_g.columns = ['protein', 'label']
data = pd.merge(df_pred, test_g, on='protein', how='left')
data = data[data['label'].notnull()]
sim = []
for text, label in zip(data['function'].tolist(), data['label'].tolist()):
sim.append(func(text, label))
data['sim'] = sim
data['avg_score'] = data['sim'].apply(lambda x: round(np.mean(x), 3))
print("average similarity score: {}".format(round(data['avg_score'].mean(), 3)))
data.to_csv('/cluster/home/wenkai/LAVIS/output/output_names.csv', index=False, sep='|')