File size: 11,136 Bytes
ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 4b441dc ab60ac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import torch
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from lavis.models.protein_models.protein_function_opt import Blip2ProteinMistral
from lavis.models.base_model import FAPMConfig
import spaces
import gradio as gr
# from esm_scripts.extract import run_demo
from esm import pretrained, FastaBatchedDataset
from data.evaluate_data.utils import Ontology
import difflib
import re
from transformers import MistralForCausalLM
# Load the trained model
def get_model(type='Molecule Function'):
model = Blip2ProteinMistral(config=FAPMConfig(), esm_size='3b')
if type == 'Molecule Function':
model.load_checkpoint("model/checkpoint_mf2.pth")
model.to('cuda')
elif type == 'Biological Process':
model.load_checkpoint("model/checkpoint_bp1.pth")
model.to('cuda')
elif type == 'Cellar Component':
model.load_checkpoint("model/checkpoint_cc2.pth")
model.to('cuda')
return model
models = {
'Molecule Function': get_model('Molecule Function'),
'Biological Process': get_model('Biological Process'),
'Cellular Component': get_model('Cellar Component'),
}
# Load the mistral model
mistral_model = MistralForCausalLM.from_pretrained("teknium/OpenHermes-2.5-Mistral-7B", torch_dtype=torch.float16).to('cuda')
# Load ESM2 model
model_esm, alphabet = pretrained.load_model_and_alphabet('esm2_t36_3B_UR50D')
model_esm.to('cuda')
model_esm.eval()
godb = Ontology(f'data/go1.4-basic.obo', with_rels=True)
go_des = pd.read_csv('data/go_descriptions1.4.txt', sep='|', header=None)
go_des.columns = ['id', 'text']
go_des = go_des.dropna()
go_des['id'] = go_des['id'].apply(lambda x: re.sub('_', ':', x))
go_obo_set = set(go_des['id'].tolist())
go_des['text'] = go_des['text'].apply(lambda x: x.lower())
GO_dict = dict(zip(go_des['text'], go_des['id']))
Func_dict = dict(zip(go_des['id'], go_des['text']))
terms_mf = pd.read_pickle('data/terms/mf_terms.pkl')
choices_mf = [Func_dict[i] for i in list(set(terms_mf['gos']))]
choices_mf = {x.lower(): x for x in choices_mf}
terms_bp = pd.read_pickle('data/terms/bp_terms.pkl')
choices_bp = [Func_dict[i] for i in list(set(terms_bp['gos']))]
choices_bp = {x.lower(): x for x in choices_bp}
terms_cc = pd.read_pickle('data/terms/cc_terms.pkl')
choices_cc = [Func_dict[i] for i in list(set(terms_cc['gos']))]
choices_cc = {x.lower(): x for x in choices_cc}
choices = {
'Molecule Function': choices_mf,
'Biological Process': choices_bp,
'Cellular Component': choices_cc,
}
@spaces.GPU
def generate_caption(protein, prompt):
# Process the image and the prompt
# with open('/home/user/app/example.fasta', 'w') as f:
# f.write('>{}\n'.format("protein_name"))
# f.write('{}\n'.format(protein.strip()))
# os.system("python esm_scripts/extract.py esm2_t36_3B_UR50D /home/user/app/example.fasta /home/user/app --repr_layers 36 --truncation_seq_length 1024 --include per_tok")
# esm_emb = run_demo(protein_name='protein_name', protein_seq=protein,
# model=model_esm, alphabet=alphabet,
# include='per_tok', repr_layers=[36], truncation_seq_length=1024)
protein_name = 'protein_name'
protein_seq = protein
include = 'per_tok'
repr_layers = [36]
truncation_seq_length = 1024
toks_per_batch = 4096
print("start")
dataset = FastaBatchedDataset([protein_name], [protein_seq])
print("dataset prepared")
batches = dataset.get_batch_indices(toks_per_batch, extra_toks_per_seq=1)
print("batches prepared")
data_loader = torch.utils.data.DataLoader(
dataset, collate_fn=alphabet.get_batch_converter(truncation_seq_length), batch_sampler=batches
)
print(f"Read sequences")
return_contacts = "contacts" in include
assert all(-(model_esm.num_layers + 1) <= i <= model_esm.num_layers for i in repr_layers)
repr_layers = [(i + model_esm.num_layers + 1) % (model_esm.num_layers + 1) for i in repr_layers]
with torch.no_grad():
for batch_idx, (labels, strs, toks) in enumerate(data_loader):
print(
f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)"
)
if torch.cuda.is_available():
toks = toks.to(device="cuda", non_blocking=True)
out = model_esm(toks, repr_layers=repr_layers, return_contacts=return_contacts)
representations = {
layer: t.to(device="cpu") for layer, t in out["representations"].items()
}
if return_contacts:
contacts = out["contacts"].to(device="cpu")
for i, label in enumerate(labels):
result = {"label": label}
truncate_len = min(truncation_seq_length, len(strs[i]))
# Call clone on tensors to ensure tensors are not views into a larger representation
# See https://github.com/pytorch/pytorch/issues/1995
if "per_tok" in include:
result["representations"] = {
layer: t[i, 1: truncate_len + 1].clone()
for layer, t in representations.items()
}
if "mean" in include:
result["mean_representations"] = {
layer: t[i, 1: truncate_len + 1].mean(0).clone()
for layer, t in representations.items()
}
if "bos" in include:
result["bos_representations"] = {
layer: t[i, 0].clone() for layer, t in representations.items()
}
if return_contacts:
result["contacts"] = contacts[i, : truncate_len, : truncate_len].clone()
esm_emb = result['representations'][36]
'''
inputs = tokenizer([protein], return_tensors="pt", padding=True, truncation=True).to('cuda')
with torch.no_grad():
outputs = model_esm(**inputs)
esm_emb = outputs.last_hidden_state.detach()[0]
'''
print("esm embedding generated")
esm_emb = F.pad(esm_emb.t(), (0, 1024 - len(esm_emb))).t().to('cuda')
if prompt is None:
prompt = 'none'
else:
prompt = prompt.lower()
samples = {'name': ['protein_name'],
'image': torch.unsqueeze(esm_emb, dim=0),
'text_input': ['none'],
'prompt': [prompt]}
union_pred_terms = []
for model_id in models.keys():
model = models[model_id]
# Generate the output
prediction = model.generate(mistral_model, samples, length_penalty=0., num_beams=15, num_captions=10, temperature=1.,
repetition_penalty=1.0)
x = prediction[0]
x = [eval(i) for i in x.split('; ')]
pred_terms = []
temp = []
for i in x:
txt = i[0]
prob = i[1]
sim_list = difflib.get_close_matches(txt.lower(), choices[model_id], n=1, cutoff=0.9)
if len(sim_list) > 0:
t_standard = sim_list[0]
if t_standard not in temp:
pred_terms.append(t_standard+f'({prob})')
temp.append(t_standard)
union_pred_terms.append(pred_terms)
if prompt == 'none':
res_str = "No available predictions for this protein, you can use other two types of model, remove prompt or try another sequence!"
else:
res_str = "No available predictions for this protein, you can use other two types of model or try another sequence!"
if len(union_pred_terms[0]) == 0 and len(union_pred_terms[1]) == 0 and len(union_pred_terms[2]) == 0:
return res_str
res_str = ''
if len(union_pred_terms[0]) != 0:
res_str += f"Based on the given amino acid sequence, the protein appears to have a primary function of {', '.join(pred_terms)}. "
if len(union_pred_terms[1]) != 0:
res_str += f"It is likely involved in the {', '.join(pred_terms)}. "
if len(union_pred_terms[2]) != 0:
res_str += f"It's subcellular localization is within the {', '.join(pred_terms)}."
return res_str
# return "test"
# Define the FAPM interface
description = """Quick demonstration of the FAPM model for protein function prediction. Upload an protein sequence to generate a function description. Modify the Prompt to provide the taxonomy information.
The model used in this app is available at [Hugging Face Model Hub](https://huggingface.co./wenkai/FAPM) and the source code can be found on [GitHub](https://github.com/xiangwenkai/FAPM/tree/main)."""
# iface = gr.Interface(
# fn=generate_caption,
# inputs=[gr.Textbox(type="text", label="Upload sequence"), gr.Textbox(type="text", label="Prompt")],
# outputs=gr.Textbox(label="Generated description"),
# description=description
# )
# # Launch the interface
# iface.launch()
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(description)
with gr.Tab(label="Protein caption"):
with gr.Row():
with gr.Column():
input_protein = gr.Textbox(type="text", label="Upload sequence")
prompt = gr.Textbox(type="text", label="Taxonomy Prompt (Optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
# O14813 train index 127, 266, 738, 1060 test index 4
gr.Examples(
examples=[
["MDYSYLNSYDSCVAAMEASAYGDFGACSQPGGFQYSPLRPAFPAAGPPCPALGSSNCALGALRDHQPAPYSAVPYKFFPEPSGLHEKRKQRRIRTTFTSAQLKELERVFAETHYPDIYTREELALKIDLTEARVQVWFQNRRAKFRKQERAASAKGAAGAAGAKKGEARCSSEDDDSKESTCSPTPDSTASLPPPPAPGLASPRLSPSPLPVALGSGPGPGPGPQPLKGALWAGVAGGGGGGPGAGAAELLKAWQPAESGPGPFSGVLSSFHRKPGPALKTNLF", ''],
["MKTLALFLVLVCVLGLVQSWEWPWNRKPTKFPIPSPNPRDKWCRLNLGPAWGGRC", ''],
["MAAAGGARLLRAASAVLGGPAGRWLHHAGSRAGSSGLLRNRGPGGSAEASRSLSVSARARSSSEDKITVHFINRDGETLTTKGKVGDSLLDVVVENNLDIDGFGACEGTLACSTCHLIFEDHIYEKLDAITDEENDMLDLAYGLTDRSRLGCQICLTKSMDNMTVRVPETVADARQSIDVGKTS", 'Homo'],
['MASAELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVDSEELTVEERNLLSVAYKNVIGARRASWRIISSIEQKEEGRGNEDRVTLIKDYRGKIETELTKICDGILKLLETHLVPSSTAPESKVFYLKMKGDYYRYLAEFKTGAERKDAAENTMVAYKAAQDIALAELAPTHPIRLGLALNFSVFYYEILNSPDRACSLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLTLWTSDISEDPAEEIREAPKRDSSEGQ', 'Zea'],
['MIKAAVTKESLYRMNTLMEAFQGFLGLDLGEFTFKVKPGVFLLTDVKSYLIGDKYDDAFNALIDFVLRNDRDAVEGTETDVSIRLGLSPSDMVVKRQDKTFTFTHGDLEFEVHWINL', 'Bacteriophage'],
['MNDLMIQLLDQFEMGLRERAIKVMATINDEKHRFPMELNKKQCSLMLLGTTDTTTFDMRFNSKKDFPRIKGAREKYPRDAVIEWYHQNWMRTEVKQ', 'Bacteriophage'],
],
inputs=[input_protein, prompt],
outputs=[output_text],
fn=generate_caption,
cache_examples=True,
label='Try examples'
)
submit_btn.click(generate_caption, [input_protein, prompt], [output_text])
demo.launch(debug=True)
|