wenge-research commited on
Commit
321524b
·
1 Parent(s): dc16eed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -22
README.md CHANGED
@@ -27,13 +27,48 @@ YAYI 2 is a collection of open-source large language models launched by Wenge Te
27
  For more details about the YAYI 2, please refer to our GitHub repository. Stay tuned for more technical details in our upcoming technical report! 🔥
28
 
29
 
30
- ## 模型/Model
31
 
32
  | Model Name | Context Length | 🤗 HF Model Name |
33
  |:----------|:----------:|:----------:|
34
  | YAYI2-30B | 4096 | wenge-research/yayi2-30b|
35
 
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ## 评测结果/Evaluation
38
 
39
  我们在多个基准数据集上进行了评测,包括 C-Eval、MMLU、 CMMLU、AGIEval、GAOKAO-Bench、GSM8K、MATH、BBH、HumanEval 以及 MBPP。我们考察了模型在语言理解、学科知识、数学推理、逻辑推理以及代码生成方面的表现。YAYI 2 模型在与其规模相近的开源模型中展现出了显著的性能提升。
@@ -200,27 +235,6 @@ We evaluate our model on standard benchmarks, including C-Eval, MMLU, CMMLU, AGI
200
  We evaluate our model using the source code from the [OpenCompass Github repository](https://github.com/open-compass/opencompass). If available, we report results for comparative models assessed by OpenCompass with the evaluation reference date set to Dec. 15th, 2013. For MPT, Falfon, and Llama, which have not been evaluated by OpenCompass, we use the results reported in the [LLaMA 2](https://arxiv.org/abs/2307.09288) paper.
201
 
202
 
203
- ## 快速开始/Quick Start
204
-
205
- ```python
206
- >>> from transformers import AutoModelForCausalLM, AutoTokenizer
207
- >>> tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
208
- >>> model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
209
- >>> inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
210
- >>> inputs = inputs.to('cuda')
211
- >>> pred = model.generate(
212
- **inputs,
213
- max_new_tokens=256,
214
- eos_token_id=tokenizer.eos_token_id,
215
- do_sample=True,
216
- repetition_penalty=1.2,
217
- temperature=0.4,
218
- top_k=100,
219
- top_p=0.8
220
- )
221
- >>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
222
- ```
223
-
224
 
225
  ## 协议/Liencese
226
 
 
27
  For more details about the YAYI 2, please refer to our GitHub repository. Stay tuned for more technical details in our upcoming technical report! 🔥
28
 
29
 
30
+ ## 模型细节/Model
31
 
32
  | Model Name | Context Length | 🤗 HF Model Name |
33
  |:----------|:----------:|:----------:|
34
  | YAYI2-30B | 4096 | wenge-research/yayi2-30b|
35
 
36
 
37
+
38
+
39
+ ## 要求 Requirements)
40
+
41
+ python 3.8及以上版本
42
+ pytorch 1.12及以上版本,推荐2.0及以上版本
43
+ 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
44
+ 运行BF16或FP16模型需要多卡至少144GB显存(例如2xA100-80G或5xV100-32G);运行Int4模型至少需要48GB显存(例如1xA100-80G或2xV100-32G)。
45
+ python 3.8 and above
46
+ pytorch 1.12 and above, 2.0 and above are recommended
47
+ CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.) To run Qwen-72B-Chat in bf16/fp16, at least 144GB GPU memory is required (e.g., 2xA100-80G or 5xV100-32G). To run it in int4, at least 48GB GPU memory is requred (e.g., 1xA100-80G or 2xV100-32G).
48
+
49
+
50
+ ## 快速开始/Quick Start
51
+
52
+ ```python
53
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
54
+ >>> tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
55
+ >>> model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
56
+ >>> inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
57
+ >>> inputs = inputs.to('cuda')
58
+ >>> pred = model.generate(
59
+ **inputs,
60
+ max_new_tokens=256,
61
+ eos_token_id=tokenizer.eos_token_id,
62
+ do_sample=True,
63
+ repetition_penalty=1.2,
64
+ temperature=0.4,
65
+ top_k=100,
66
+ top_p=0.8
67
+ )
68
+ >>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
69
+ ```
70
+
71
+
72
  ## 评测结果/Evaluation
73
 
74
  我们在多个基准数据集上进行了评测,包括 C-Eval、MMLU、 CMMLU、AGIEval、GAOKAO-Bench、GSM8K、MATH、BBH、HumanEval 以及 MBPP。我们考察了模型在语言理解、学科知识、数学推理、逻辑推理以及代码生成方面的表现。YAYI 2 模型在与其规模相近的开源模型中展现出了显著的性能提升。
 
235
  We evaluate our model using the source code from the [OpenCompass Github repository](https://github.com/open-compass/opencompass). If available, we report results for comparative models assessed by OpenCompass with the evaluation reference date set to Dec. 15th, 2013. For MPT, Falfon, and Llama, which have not been evaluated by OpenCompass, we use the results reported in the [LLaMA 2](https://arxiv.org/abs/2307.09288) paper.
236
 
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
 
239
  ## 协议/Liencese
240