--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - paulml/OmniBeagleSquaredMBX-v3-7B - automerger/YamshadowExperiment28-7B base_model: - paulml/OmniBeagleSquaredMBX-v3-7B - automerger/YamshadowExperiment28-7B model-index: - name: BenchmarkEngineering-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 74.15 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.09 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.69 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.93 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.32 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.22 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-7B-slerp name: Open LLM Leaderboard --- # BenchmarkEngineering-7B-slerp This model was merged with the intent of producing excellent Open-LLM benchmarking results by smashing two of the highest performant models in their class together BenchmarkEngineering-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OmniBeagleSquaredMBX-v3-7B](https://huggingface.co./paulml/OmniBeagleSquaredMBX-v3-7B) * [automerger/YamshadowExperiment28-7B](https://huggingface.co./automerger/YamshadowExperiment28-7B) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_weezywitasneezy__BenchmarkEngineering-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |76.40| |AI2 Reasoning Challenge (25-Shot)|74.15| |HellaSwag (10-Shot) |89.09| |MMLU (5-Shot) |64.69| |TruthfulQA (0-shot) |75.93| |Winogrande (5-shot) |85.32| |GSM8k (5-shot) |69.22| ## 🧩 Configuration ```yaml slices: - sources: - model: paulml/OmniBeagleSquaredMBX-v3-7B layer_range: [0, 32] - model: automerger/YamshadowExperiment28-7B layer_range: [0, 32] merge_method: slerp base_model: paulml/OmniBeagleSquaredMBX-v3-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "weezywitasneezy/BenchmarkEngineering-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```