Text Classification
Transformers
PyTorch
English
deberta-v2
Inference Endpoints
ikrysinska commited on
Commit
5745e4b
1 Parent(s): 06a229c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -1
README.md CHANGED
@@ -90,6 +90,7 @@ encoded_input = tokenizer(tweet, conspiracy_theory, return_tensors="pt")
90
  logits = model(encoded_input.input_ids, encoded_input.attention_mask).logits
91
  support_likelihood = logits.softmax(dim=1)[0].tolist()[0] # 0.93198
92
  ```
 
93
 
94
  ## Training Details
95
 
@@ -99,7 +100,11 @@ The model was finetuned with [webimmunization/COVID-19-CT-tweets-classification
99
 
100
  ### Training Procedure
101
 
102
- The adapter was trained for 5 epochs with a batch size of 16.
 
 
 
 
103
 
104
  #### Preprocessing
105
 
 
90
  logits = model(encoded_input.input_ids, encoded_input.attention_mask).logits
91
  support_likelihood = logits.softmax(dim=1)[0].tolist()[0] # 0.93198
92
  ```
93
+ Loading the model shouldn't take more than 10 minutes depending on the Internet connection.
94
 
95
  ## Training Details
96
 
 
100
 
101
  ### Training Procedure
102
 
103
+ The adapter was trained for 5 epochs with a batch size of 16.
104
+
105
+ ### System requirements
106
+
107
+ We used Python 3.10, PyTorch 2.0.1, and transformers 4.27.0.
108
 
109
  #### Preprocessing
110