Text Classification
Transformers
PyTorch
English
deberta-v2
Inference Endpoints
File size: 6,235 Bytes
55b51f3
5c5e8e0
55b51f3
5c5e8e0
 
 
 
55b51f3
5c5e8e0
 
 
 
 
 
471e9d4
5c5e8e0
471e9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5e8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e9d4
5c5e8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
471e9d4
5c5e8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e9d4
 
 
 
 
5c5e8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
language: en
license: cc-by-4.0
datasets:
- multi_nli
library_name: transformers
pipeline_tag: text-classification
---

# Model Card for Model COVID-19-CT-tweets-classification

### Model Description

<!-- Provide a longer summary of what this model is. -->
This is a deBERTa-v3-base model with an adapter trained on X tweets from [More Information Needed] finetuned for text classification. The model predicts whether a tweet supports a given conspiracy theory or not. The model was trained on tweets related to six common COVID-19 conspiracy theories.

1. **Vaccines are unsafe** The coronavirus vaccine is either unsafe or part of a larger plot to control people or reduce the population. 

2. **Governments and politicians spread misinformation** Politicians or government agencies are intentionally spreading false information, or they have some other motive for the way they are responding to the coronavirus. 

3. **The Chinese intentionally spread the virus** The Chinese government intentionally created or spread the coronavirus to harm other countries. 

4. **Deliberate strategy to create economic instability or benefit large corporations** The coronavirus or the government's response to it is a deliberate strategy to create economic instability or to benefit large corporations over small businesses. 

5. **Public intentionally misled about the true nature of the virus and prevention** The public is being intentionally misled about the true nature of the Coronavirus, its risks, or the efficacy of certain treatments or prevention methods. 

6. **Human made and bioweapon** The Coronavirus was created intentionally, made by humans, or as a bioweapon. 


This model is suitable for English.

- **Developed by:** Webimmunication Team
- **Shared by [optional]:** @ikrysinska
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** EN
- **License:** CC BY 4.0
- **Finetuned from model [optional]:** https://huggingface.co./sileod/deberta-v3-base-tasksource-nli 

### Model Sources

- **Paper:** [More Information Needed]

- ## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

- hashtags, mentions, punctuation.


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

The model was evaluated on a sample 

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Data Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** GPU Tesla V100
- **Hours used:** 40
- **Cloud Provider:** Google Cloud Platform
- **Compute Region:** us-east1
- **Carbon Emitted:** 4.44 kg CO2 ([equivalent to: 17.9 km driven by an average ICE car, 2.22 kgs of coal burned, 0.07 tree seedlings sequesting carbon for 10 years](https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references)


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

@ikrysinska, @wtomi

## Model Card Contact

[email protected]
[email protected]
[email protected]