File size: 6,235 Bytes
55b51f3 5c5e8e0 55b51f3 5c5e8e0 55b51f3 5c5e8e0 471e9d4 5c5e8e0 471e9d4 5c5e8e0 471e9d4 5c5e8e0 471e9d4 5c5e8e0 471e9d4 5c5e8e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
language: en
license: cc-by-4.0
datasets:
- multi_nli
library_name: transformers
pipeline_tag: text-classification
---
# Model Card for Model COVID-19-CT-tweets-classification
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is a deBERTa-v3-base model with an adapter trained on X tweets from [More Information Needed] finetuned for text classification. The model predicts whether a tweet supports a given conspiracy theory or not. The model was trained on tweets related to six common COVID-19 conspiracy theories.
1. **Vaccines are unsafe** The coronavirus vaccine is either unsafe or part of a larger plot to control people or reduce the population.
2. **Governments and politicians spread misinformation** Politicians or government agencies are intentionally spreading false information, or they have some other motive for the way they are responding to the coronavirus.
3. **The Chinese intentionally spread the virus** The Chinese government intentionally created or spread the coronavirus to harm other countries.
4. **Deliberate strategy to create economic instability or benefit large corporations** The coronavirus or the government's response to it is a deliberate strategy to create economic instability or to benefit large corporations over small businesses.
5. **Public intentionally misled about the true nature of the virus and prevention** The public is being intentionally misled about the true nature of the Coronavirus, its risks, or the efficacy of certain treatments or prevention methods.
6. **Human made and bioweapon** The Coronavirus was created intentionally, made by humans, or as a bioweapon.
This model is suitable for English.
- **Developed by:** Webimmunication Team
- **Shared by [optional]:** @ikrysinska
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** EN
- **License:** CC BY 4.0
- **Finetuned from model [optional]:** https://huggingface.co./sileod/deberta-v3-base-tasksource-nli
### Model Sources
- **Paper:** [More Information Needed]
- ## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
- hashtags, mentions, punctuation.
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
The model was evaluated on a sample
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** GPU Tesla V100
- **Hours used:** 40
- **Cloud Provider:** Google Cloud Platform
- **Compute Region:** us-east1
- **Carbon Emitted:** 4.44 kg CO2 ([equivalent to: 17.9 km driven by an average ICE car, 2.22 kgs of coal burned, 0.07 tree seedlings sequesting carbon for 10 years](https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references)
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
@ikrysinska, @wtomi
## Model Card Contact
[email protected]
[email protected]
[email protected]
|