Update README.md
Browse files
README.md
CHANGED
@@ -10,19 +10,6 @@ language:
|
|
10 |
---
|
11 |
# webbigdata/ALMA-7B-Ja
|
12 |
|
13 |
-
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
14 |
-
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
|
15 |
-
```
|
16 |
-
@misc{xu2023paradigm,
|
17 |
-
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
|
18 |
-
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
|
19 |
-
year={2023},
|
20 |
-
eprint={2309.11674},
|
21 |
-
archivePrefix={arXiv},
|
22 |
-
primaryClass={cs.CL}
|
23 |
-
}
|
24 |
-
```
|
25 |
-
|
26 |
Original ALMA Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB)
|
27 |
https://huggingface.co/haoranxu/ALMA-7B
|
28 |
|
@@ -43,5 +30,20 @@ And translation ability for languages other than Japanese and English has deteri
|
|
43 |
[webbigdata/ALMA-7B-Ja-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-GPTQ-Ja-En)
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
## about this work
|
47 |
- **This work was done by :** [webbigdata](https://webbigdata.jp/).
|
|
|
10 |
---
|
11 |
# webbigdata/ALMA-7B-Ja
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
Original ALMA Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB)
|
14 |
https://huggingface.co/haoranxu/ALMA-7B
|
15 |
|
|
|
30 |
[webbigdata/ALMA-7B-Ja-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-GPTQ-Ja-En)
|
31 |
|
32 |
|
33 |
+
|
34 |
+
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
35 |
+
Please find more details in their [paper](https://arxiv.org/abs/2309.11674).
|
36 |
+
```
|
37 |
+
@misc{xu2023paradigm,
|
38 |
+
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
|
39 |
+
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
|
40 |
+
year={2023},
|
41 |
+
eprint={2309.11674},
|
42 |
+
archivePrefix={arXiv},
|
43 |
+
primaryClass={cs.CL}
|
44 |
+
}
|
45 |
+
```
|
46 |
+
|
47 |
+
|
48 |
## about this work
|
49 |
- **This work was done by :** [webbigdata](https://webbigdata.jp/).
|