wdika commited on
Commit
50b7c96
·
1 Parent(s): 8e40f3c

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +155 -0
readme_template.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - AHEAD
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - CIRIM
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_CIRIM_AHEAD_gaussian2d_12x
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Cascades of Independently Recurrent Inference Machines (CIRIM) for 12x accelerated MRI Reconstruction on the AHEAD dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/REC_CIRIM_AHEAD_gaussian2d_12x/blob/main/REC_CIRIM_AHEAD_gaussian2d_12x.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/REC/AHEAD/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: CIRIM
57
+ recurrent_layer: IndRNN
58
+ conv_filters:
59
+ - 64
60
+ - 64
61
+ - 2
62
+ conv_kernels:
63
+ - 5
64
+ - 3
65
+ - 3
66
+ conv_dilations:
67
+ - 1
68
+ - 2
69
+ - 1
70
+ conv_bias:
71
+ - true
72
+ - true
73
+ - false
74
+ recurrent_filters:
75
+ - 64
76
+ - 64
77
+ - 0
78
+ recurrent_kernels:
79
+ - 1
80
+ - 1
81
+ - 0
82
+ recurrent_dilations:
83
+ - 1
84
+ - 1
85
+ - 0
86
+ recurrent_bias:
87
+ - true
88
+ - true
89
+ - false
90
+ depth: 2
91
+ time_steps: 8
92
+ conv_dim: 2
93
+ num_cascades: 5
94
+ no_dc: true
95
+ keep_prediction: true
96
+ accumulate_predictions: true
97
+ dimensionality: 2
98
+ num_echoes: 4
99
+ reconstruction_loss:
100
+ ssim: 1.0
101
+ ```
102
+
103
+ ## Training
104
+ ```base
105
+ optim:
106
+ name: adamw
107
+ lr: 1e-4
108
+ betas:
109
+ - 0.9
110
+ - 0.999
111
+ weight_decay: 0.0
112
+ sched:
113
+ name: PolynomialHoldDecayAnnealing
114
+ min_lr: 0.0
115
+ last_epoch: -1
116
+ warmup_ratio: 0.1
117
+
118
+ trainer:
119
+ strategy: ddp_find_unused_parameters_false
120
+ accelerator: gpu
121
+ devices: 1
122
+ num_nodes: 1
123
+ max_epochs: 20
124
+ precision: 16-mixed
125
+ enable_checkpointing: false
126
+ logger: false
127
+ log_every_n_steps: 50
128
+ check_val_every_n_epoch: -1
129
+ max_steps: -1
130
+ ```
131
+
132
+ ## Performance
133
+
134
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf/targets) configuration files.
135
+
136
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
137
+
138
+ Results
139
+ -------
140
+
141
+ Evaluation against SENSE targets
142
+ --------------------------------
143
+ 12x: MSE = 0.0009594 +/- 0.003039 NMSE = 0.04406 +/- 0.07482 PSNR = 32.89 +/- 8.596 SSIM = 0.909 +/- 0.08273
144
+
145
+
146
+ ## Limitations
147
+
148
+ This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets.
149
+
150
+
151
+ ## References
152
+
153
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
154
+
155
+ [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.