--- license: mit library_name: peft tags: - generated_from_trainer base_model: facebook/esm2_t30_150M_UR50D metrics: - accuracy model-index: - name: esm2_t130_150M-lora-classifier_2024-04-25_23-13-58 results: [] --- # esm2_t130_150M-lora-classifier_2024-04-25_23-13-58 This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co./facebook/esm2_t30_150M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4754 - Accuracy: 0.8809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005701568055793089 - train_batch_size: 12 - eval_batch_size: 12 - seed: 8893 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.587 | 1.0 | 128 | 0.6443 | 0.5957 | | 0.4373 | 2.0 | 256 | 0.6115 | 0.6699 | | 0.3057 | 3.0 | 384 | 0.4991 | 0.7812 | | 0.2758 | 4.0 | 512 | 0.4353 | 0.8242 | | 0.4801 | 5.0 | 640 | 0.3155 | 0.8691 | | 0.2161 | 6.0 | 768 | 0.3821 | 0.8301 | | 0.178 | 7.0 | 896 | 0.2889 | 0.875 | | 0.3202 | 8.0 | 1024 | 0.2716 | 0.8945 | | 0.192 | 9.0 | 1152 | 0.3002 | 0.8848 | | 0.0997 | 10.0 | 1280 | 0.3142 | 0.8828 | | 0.0146 | 11.0 | 1408 | 0.3388 | 0.8965 | | 0.0777 | 12.0 | 1536 | 0.4100 | 0.8711 | | 0.0337 | 13.0 | 1664 | 0.3152 | 0.8848 | | 0.4337 | 14.0 | 1792 | 0.4699 | 0.8848 | | 0.2544 | 15.0 | 1920 | 0.3347 | 0.8867 | | 0.0166 | 16.0 | 2048 | 0.4547 | 0.8770 | | 0.0084 | 17.0 | 2176 | 0.3627 | 0.8867 | | 0.3829 | 18.0 | 2304 | 0.3663 | 0.8887 | | 0.096 | 19.0 | 2432 | 0.3994 | 0.8848 | | 0.017 | 20.0 | 2560 | 0.4222 | 0.8867 | | 0.0093 | 21.0 | 2688 | 0.4519 | 0.8906 | | 0.0035 | 22.0 | 2816 | 0.4575 | 0.8828 | | 0.0072 | 23.0 | 2944 | 0.4675 | 0.8828 | | 0.0306 | 24.0 | 3072 | 0.4675 | 0.8867 | | 0.1433 | 25.0 | 3200 | 0.4795 | 0.8828 | | 0.0073 | 26.0 | 3328 | 0.4755 | 0.8789 | | 0.3764 | 27.0 | 3456 | 0.4759 | 0.8809 | | 0.02 | 28.0 | 3584 | 0.4723 | 0.8828 | | 0.0061 | 29.0 | 3712 | 0.4736 | 0.8809 | | 0.0042 | 30.0 | 3840 | 0.4754 | 0.8809 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.16.1 - Tokenizers 0.15.2