--- license: mit library_name: peft tags: - generated_from_trainer base_model: facebook/esm2_t12_35M_UR50D metrics: - accuracy model-index: - name: esm2_t12_35M-lora-binding-sites_2024-04-25_17-02-01 results: [] --- # esm2_t12_35M-lora-binding-sites_2024-04-25_17-02-01 This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co./facebook/esm2_t12_35M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3783 - Accuracy: 0.8613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005701568055793089 - train_batch_size: 64 - eval_batch_size: 64 - seed: 8893 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6443 | 1.0 | 24 | 0.6716 | 0.5977 | | 0.6838 | 2.0 | 48 | 0.6690 | 0.5977 | | 0.5906 | 3.0 | 72 | 0.6440 | 0.5977 | | 0.585 | 4.0 | 96 | 0.5897 | 0.7012 | | 0.6142 | 5.0 | 120 | 0.5522 | 0.6992 | | 0.61 | 6.0 | 144 | 0.5307 | 0.7148 | | 0.5131 | 7.0 | 168 | 0.5134 | 0.75 | | 0.365 | 8.0 | 192 | 0.4437 | 0.8105 | | 0.4282 | 9.0 | 216 | 0.4010 | 0.8379 | | 0.3102 | 10.0 | 240 | 0.3643 | 0.8516 | | 0.41 | 11.0 | 264 | 0.3624 | 0.8652 | | 0.317 | 12.0 | 288 | 0.3877 | 0.8145 | | 0.2332 | 13.0 | 312 | 0.3383 | 0.8672 | | 0.2698 | 14.0 | 336 | 0.3389 | 0.8672 | | 0.1326 | 15.0 | 360 | 0.3548 | 0.8535 | | 0.1187 | 16.0 | 384 | 0.3313 | 0.8770 | | 0.1597 | 17.0 | 408 | 0.3447 | 0.8652 | | 0.1886 | 18.0 | 432 | 0.3543 | 0.8672 | | 0.1883 | 19.0 | 456 | 0.3396 | 0.875 | | 0.1156 | 20.0 | 480 | 0.3510 | 0.8652 | | 0.2604 | 21.0 | 504 | 0.3529 | 0.875 | | 0.1104 | 22.0 | 528 | 0.3654 | 0.8711 | | 0.1723 | 23.0 | 552 | 0.3631 | 0.8691 | | 0.1516 | 24.0 | 576 | 0.3719 | 0.8633 | | 0.0731 | 25.0 | 600 | 0.3745 | 0.8672 | | 0.1381 | 26.0 | 624 | 0.3765 | 0.8691 | | 0.291 | 27.0 | 648 | 0.3760 | 0.8613 | | 0.0924 | 28.0 | 672 | 0.3789 | 0.8633 | | 0.2029 | 29.0 | 696 | 0.3783 | 0.8594 | | 0.242 | 30.0 | 720 | 0.3783 | 0.8613 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.16.1 - Tokenizers 0.15.2