File size: 3,290 Bytes
0103ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/esm2_t12_35M_UR50D
metrics:
- accuracy
model-index:
- name: esm2_t12_35M-lora-binding-sites_2024-04-25_14-35-31
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# esm2_t12_35M-lora-binding-sites_2024-04-25_14-35-31
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co./facebook/esm2_t12_35M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3589
- Accuracy: 0.8457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005701568055793089
- train_batch_size: 64
- eval_batch_size: 64
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6703 | 1.0 | 24 | 0.6807 | 0.5820 |
| 0.6449 | 2.0 | 48 | 0.6703 | 0.5820 |
| 0.6659 | 3.0 | 72 | 0.6458 | 0.5977 |
| 0.6432 | 4.0 | 96 | 0.6612 | 0.6328 |
| 0.6322 | 5.0 | 120 | 0.6051 | 0.6523 |
| 0.6176 | 6.0 | 144 | 0.6062 | 0.6504 |
| 0.4904 | 7.0 | 168 | 0.5762 | 0.6777 |
| 0.4426 | 8.0 | 192 | 0.5784 | 0.6953 |
| 0.6014 | 9.0 | 216 | 0.5497 | 0.7148 |
| 0.4484 | 10.0 | 240 | 0.5399 | 0.7227 |
| 0.552 | 11.0 | 264 | 0.5142 | 0.7480 |
| 0.3581 | 12.0 | 288 | 0.4395 | 0.7930 |
| 0.3604 | 13.0 | 312 | 0.4201 | 0.8066 |
| 0.2733 | 14.0 | 336 | 0.4107 | 0.8262 |
| 0.2539 | 15.0 | 360 | 0.4373 | 0.8008 |
| 0.3538 | 16.0 | 384 | 0.3954 | 0.8301 |
| 0.4363 | 17.0 | 408 | 0.3852 | 0.8320 |
| 0.3433 | 18.0 | 432 | 0.3735 | 0.8418 |
| 0.2758 | 19.0 | 456 | 0.3685 | 0.8438 |
| 0.2073 | 20.0 | 480 | 0.3860 | 0.8262 |
| 0.3578 | 21.0 | 504 | 0.3689 | 0.8301 |
| 0.3114 | 22.0 | 528 | 0.3626 | 0.8418 |
| 0.3296 | 23.0 | 552 | 0.3621 | 0.8438 |
| 0.276 | 24.0 | 576 | 0.3602 | 0.8457 |
| 0.2583 | 25.0 | 600 | 0.3622 | 0.8457 |
| 0.1917 | 26.0 | 624 | 0.3597 | 0.8477 |
| 0.3588 | 27.0 | 648 | 0.3603 | 0.8477 |
| 0.219 | 28.0 | 672 | 0.3606 | 0.8438 |
| 0.3091 | 29.0 | 696 | 0.3586 | 0.8457 |
| 0.2235 | 30.0 | 720 | 0.3589 | 0.8457 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2 |