watashihakobashi
commited on
Update README_en.md
Browse files- README_en.md +99 -0
README_en.md
CHANGED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
+
- en
|
6 |
+
---
|
7 |
+
|
8 |
+
## Model Overview
|
9 |
+
This model is a compiled version of [Watashiha-Llama-2-13B-Ogiri-sft](https://huggingface.co/watashiha/Watashiha-Llama-2-13B-Ogiri-sft) designed to run on AWS's inf2 instances.
|
10 |
+
|
11 |
+
The compilation was done following the instructions in this article:
|
12 |
+
https://huggingface.co/docs/optimum-neuron/tutorials/llama2-13b-chatbot
|
13 |
+
|
14 |
+
* License: LLAMA 2 COMMUNITY LICENSE]
|
15 |
+
|
16 |
+
## How to Use
|
17 |
+
1. Launch an **inf2.xlarge** instance on AWS EC2.
|
18 |
+
As downloading the model requires about 50GB, it is recommended to set the storage size to 256GB or more.
|
19 |
+
Please use the following AMI:
|
20 |
+
**Deep Learning AMI Neuron PyTorch 1.13 (Ubuntu 20.04) 20240102**
|
21 |
+
|
22 |
+
2. Execute the following command to activate the provided Python environment.
|
23 |
+
```bash
|
24 |
+
source /opt/aws_neuron_venv_pytorch/bin/activate
|
25 |
+
```
|
26 |
+
|
27 |
+
3. Install **optimum**.
|
28 |
+
```bash
|
29 |
+
pip install optimum[neuronx]
|
30 |
+
```
|
31 |
+
|
32 |
+
4. Once the above steps are completed, execute the provided source code.
|
33 |
+
```python
|
34 |
+
from optimum.neuron import NeuronModelForCausalLM
|
35 |
+
from transformers import AutoTokenizer
|
36 |
+
|
37 |
+
model_name = "watashiha/Watashiha-Llama-2-13B-Ogiri-sft-neuron"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
39 |
+
model = NeuronModelForCausalLM.from_pretrained(model_name)
|
40 |
+
|
41 |
+
odai = "What happens when a clock is hungry?"
|
42 |
+
text = f"""
|
43 |
+
Below is a combination of instructions explaining the task and contextually relevant input. Write a response that appropriately fulfills the request.
|
44 |
+
|
45 |
+
Instructions:
|
46 |
+
The input sentence is a prompt for a comedy skit. Generate a funny punchline that aligns with the prompt.
|
47 |
+
|
48 |
+
Input:
|
49 |
+
{odai}
|
50 |
+
|
51 |
+
Response:
|
52 |
+
"""
|
53 |
+
text = text.lstrip()
|
54 |
+
|
55 |
+
token_ids = tokenizer.encode(text, return_tensors="pt")
|
56 |
+
input_len = token_ids.shape[1]
|
57 |
+
output_ids = model.generate(
|
58 |
+
token_ids,
|
59 |
+
max_length=input_len + 64,
|
60 |
+
do_sample=True,
|
61 |
+
top_p=0.9,
|
62 |
+
top_k=50,
|
63 |
+
temperature=0.8,
|
64 |
+
pad_token_id=tokenizer.pad_token_id,
|
65 |
+
eos_token_id=tokenizer.eos_token_id,
|
66 |
+
)
|
67 |
+
output = tokenizer.decode(output_ids.tolist()[0], skip_special_tokens=True)
|
68 |
+
print(output)
|
69 |
+
"""
|
70 |
+
Below is a combination of instructions explaining the task and contextually relevant input. Write a response that appropriately fulfills the request.
|
71 |
+
|
72 |
+
Instructions:
|
73 |
+
The input sentence is a prompt for a comedy skit. Generate a funny punchline that aligns with the prompt.
|
74 |
+
|
75 |
+
Input:
|
76 |
+
{odai}
|
77 |
+
|
78 |
+
Response:
|
79 |
+
It takes time to get back on top!
|
80 |
+
"""
|
81 |
+
```
|
82 |
+
|
83 |
+
### Parameters for compilation
|
84 |
+
|
85 |
+
#### input_shapes
|
86 |
+
```
|
87 |
+
{
|
88 |
+
"batch_size": 1,
|
89 |
+
"sequence_length": 1024,
|
90 |
+
}
|
91 |
+
```
|
92 |
+
|
93 |
+
#### compiler_args
|
94 |
+
```
|
95 |
+
{
|
96 |
+
"num_cores": 2,
|
97 |
+
"auto_cast_type": 'bf16',
|
98 |
+
}
|
99 |
+
```
|