--- license: apache-2.0 datasets: - wikimedia/wikipedia language: - pt metrics: - accuracy library_name: transformers --- # Model Card for Model ID ## Model Details ### Model Description Periquito-3B is a large language model (LLM) trained by Wandgibaut. It is built upon the OpenLlama-3B architecture and specifically fine-tuned using Portuguese Wikipedia (pt-br) data. This specialization makes it particularly adept at understanding and generating text in Brazilian Portuguese. - **Developed by:** Wandemberg Gibaut - **Model type:** Llama - **Language(s) (NLP):** Portuguese - **License:** Apache License 2.0 - **Finetuned from model [optional]:** openlm-research/open_llama_3b ### Loading the Weights with Hugging Face Transformers ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM model_path = 'wandgibaut/periquito-3B' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) prompt = 'Q: Qual o maior animal terrestre?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=32 ) print(tokenizer.decode(generation_output[0])) ``` For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co./docs/transformers/main/model_doc/llama). ### Evaluating with LM-Eval-Harness The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, we used a custom version, that has some translated tasks and the ENEM suit. This can be found in [wandgibaut/lm-evaluation-harness-PTBR](https://github.com/wandgibaut/lm-evaluation-harness-PTBR). ## Dataset and Training We finetunned the model on Wikipedia-pt dataset with LoRA, in Google's TPU-v3 in the [Google's TPU Research program](https://sites.research.google/trc/about/). ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). hf-causal (pretrained=wandgibaut/periquito-3B), limit: None, provide_description: False, num_fewshot: 0, batch_size: None | Task |Version| Metric | Value | |Stderr| |---------|------:|------------|------:|---|-----:| |agnews_pt| 0|acc | 0.6184|± |0.0056| |boolq_pt | 1|acc | 0.6333|± |0.0084| |faquad | 1|exact | 7.9365| | | | | |f1 |45.6971| | | | | |HasAns_exact| 7.9365| | | | | |HasAns_f1 |45.6971| | | | | |NoAns_exact | 0.0000| | | | | |NoAns_f1 | 0.0000| | | | | |best_exact | 7.9365| | | | | |best_f1 |45.6971| | | |imdb_pt | 0|acc | 0.6338|± |0.0068| |sst2_pt | 1|acc | 0.6823|± |0.0158| |toldbr | 0|acc | 0.4629|± |0.0109| | | |f1_macro | 0.3164| | | hf-causal (pretrained=wandgibaut/periquito-3B,dtype=float), limit: None, provide_description: False, num_fewshot: 3, batch_size: None | Task |Version| Metric | Value | |Stderr| |---------|------:|------------|------:|---|-----:| |agnews_pt| 0|acc | 0.6242|± |0.0056| |boolq_pt | 1|acc | 0.6477|± |0.0084| |faquad | 1|exact |34.9206| | | | | |f1 |70.3968| | | | | |HasAns_exact|34.9206| | | | | |HasAns_f1 |70.3968| | | | | |NoAns_exact | 0.0000| | | | | |NoAns_f1 | 0.0000| | | | | |best_exact |34.9206| | | | | |best_f1 |70.3968| | | |imdb_pt | 0|acc | 0.8408|± |0.0052| |sst2_pt | 1|acc | 0.7775|± |0.0141| |toldbr | 0|acc | 0.5143|± |0.0109| | | |f1_macro | 0.5127| | | hf-causal (pretrained=wandgibaut/periquito-3B), limit: None, provide_description: False, num_fewshot: 0, batch_size: None | Task |Version| Metric |Value | |Stderr| |-------------|------:|----------------|-----:|---|-----:| |enem | 0|acc |0.1976|± |0.0132| | | |2009 |0.2022|± |0.0428| | | |2016 |0.1809|± |0.0399| | | |2015 |0.1348|± |0.0364| | | |2016_2_ |0.2366|± |0.0443| | | |2017 |0.2022|± |0.0428| | | |2013 |0.1647|± |0.0405| | | |2012 |0.2174|± |0.0432| | | |2011 |0.2292|± |0.0431| | | |2010 |0.2157|± |0.0409| | | |2014 |0.1839|± |0.0418| |enem_2022 | 0|acc |0.2373|± |0.0393| | | |2022 |0.2373|± |0.0393| | | |human-sciences |0.2703|± |0.0740| | | |mathematics |0.1818|± |0.0842| | | |natural-sciences|0.1538|± |0.0722| | | |languages |0.3030|± |0.0812| |enem_CoT | 0|acc |0.1812|± |0.0127| | | |2009 |0.1348|± |0.0364| | | |2016 |0.1596|± |0.0380| | | |2015 |0.1124|± |0.0337| | | |2016_2_ |0.1290|± |0.0350| | | |2017 |0.2247|± |0.0445| | | |2013 |0.1765|± |0.0416| | | |2012 |0.2391|± |0.0447| | | |2011 |0.1979|± |0.0409| | | |2010 |0.2451|± |0.0428| | | |2014 |0.1839|± |0.0418| |enem_CoT_2022| 0|acc |0.2119|± |0.0378| | | |2022 |0.2119|± |0.0378| | | |human-sciences |0.2703|± |0.0740| | | |mathematics |0.1818|± |0.0842| | | |natural-sciences|0.2308|± |0.0843| | | |languages |0.1515|± |0.0634| hf-causal (pretrained=wandgibaut/periquito-3B,dtype=float), limit: None, provide_description: False, num_fewshot: 1, batch_size: None | Task |Version| Metric |Value | |Stderr| |-------------|------:|----------------|-----:|---|-----:| |enem | 0|acc |0.1790|± |0.0127| | | |2009 |0.1573|± |0.0388| | | |2016 |0.2021|± |0.0416| | | |2015 |0.1573|± |0.0388| | | |2016_2_ |0.1935|± |0.0412| | | |2017 |0.2247|± |0.0445| | | |2013 |0.1412|± |0.0380| | | |2012 |0.1739|± |0.0397| | | |2011 |0.1979|± |0.0409| | | |2010 |0.1961|± |0.0395| | | |2014 |0.1379|± |0.0372| |enem_2022 | 0|acc |0.1864|± |0.0360| | | |2022 |0.1864|± |0.0360| | | |human-sciences |0.2432|± |0.0715| | | |mathematics |0.1364|± |0.0749| | | |natural-sciences|0.1154|± |0.0639| | | |languages |0.2121|± |0.0723| |enem_CoT | 0|acc |0.2009|± |0.0132| | | |2009 |0.2135|± |0.0437| | | |2016 |0.2340|± |0.0439| | | |2015 |0.1348|± |0.0364| | | |2016_2_ |0.2258|± |0.0436| | | |2017 |0.2360|± |0.0453| | | |2013 |0.1529|± |0.0393| | | |2012 |0.1957|± |0.0416| | | |2011 |0.2500|± |0.0444| | | |2010 |0.1667|± |0.0371| | | |2014 |0.1954|± |0.0428| |enem_CoT_2022| 0|acc |0.2542|± |0.0403| | | |2022 |0.2542|± |0.0403| | | |human-sciences |0.2703|± |0.0740| | | |mathematics |0.2273|± |0.0914| | | |natural-sciences|0.3846|± |0.0973| | | |languages |0.1515|± |0.0634| ## Use Cases: The model is suitable for text generation, language understanding, and various natural language processing tasks in Brazilian Portuguese. ## Limitations: Like many language models, Periquito-3B might exhibit biases present in its training data. Additionally, its performance is primarily optimized for Portuguese, potentially limiting its effectiveness with other languages. ## Ethical Considerations: Users are encouraged to use the model ethically, particularly by avoiding the generation of harmful or biased content. ## Acknowledgment We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. ## Citation [optional] If you found periquito-3B useful in your research or applications, please cite using the following BibTeX: **BibTeX:** ``` @software{wandgibautperiquito3B, author = {Gibaut, Wandemberg}, title = {Periquito-3B}, month = Sep, year = 2023, url = {https://huggingface.co./wandgibaut/periquito-3B} } ```