--- license: other library_name: transformers datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: wandb/gemma-7b-zephyr-sft license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms model-index: - name: gemma-7b-zephyr-dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.84 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.44 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.6 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.48 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.37 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.96 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard --- [Visualize in Weights & Biases](https://wandb.ai/llm_surgery/gemma-zephyr) # Gemma 7B Zephyr DPO The [Zephyr](https://huggingface.co./HuggingFaceH4/zephyr-7b-beta) DPO recipe applied on top of SFT finetuned Gemma 7B ## Model description - **Model type:** A 8.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** [wandb/gemma-7b-zephyr-sft](https://huggingface.co./wandb/gemma-7b-zephyr-sft/) ## Recipe We trained using the DPO script in [alignment handbook recipe](https://github.com/huggingface/alignment-handbook/blob/main/scripts/run_dpo.py) and logging to W&B Visit the [W&B workspace here](https://wandb.ai/llm_surgery/gemma-zephyr?nw=nwusercapecape) ## License This model has the same license as the [original Gemma model collection](https://ai.google.dev/gemma/terms) ## Compute provided by [Lambda Labs](https://lambdalabs.com/) - 8xA100 80GB node # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_tcapelle__gemma-7b-zephyr-dpo) | Metric |Value| |---------------------------------|----:| |Avg. |61.62| |AI2 Reasoning Challenge (25-Shot)|60.84| |HellaSwag (10-Shot) |80.44| |MMLU (5-Shot) |60.60| |TruthfulQA (0-shot) |42.48| |Winogrande (5-shot) |75.37| |GSM8k (5-shot) |49.96|