--- library_name: transformers language: - en license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert-base-uncased-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8811252104935365 --- # bert-base-uncased-finetuned-stsb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5017 - Pearson: 0.8854 - Spearmanr: 0.8811 - Combined Score: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.1212 | 1.0 | 360 | 0.8776 | 0.5732 | 0.8790 | 0.8762 | | 0.4308 | 2.0 | 720 | 0.8795 | 0.5607 | 0.8813 | 0.8777 | | 0.2947 | 3.0 | 1080 | 0.8836 | 0.5010 | 0.8856 | 0.8816 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1