File size: 1,729 Bytes
8368c0c
 
 
 
 
 
 
 
 
 
4f5ed35
8368c0c
 
 
 
 
 
 
4f5ed35
8368c0c
4f5ed35
 
 
 
8368c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3acc3e
 
 
 
 
8368c0c
 
 
 
 
1b66360
 
8368c0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: bert-base-uncased-finetuned-stsb
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-stsb

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Combined Score: 0.8836
- Loss: 0.5010
- Pearson: 0.8856
- Spearmanr: 0.8816

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:|
| 1.1212        | 1.0   | 360  | 0.8776         | 0.5732          | 0.8790  | 0.8762    |
| 0.4308        | 2.0   | 720  | 0.8795         | 0.5607          | 0.8813  | 0.8777    |
| 0.2947        | 3.0   | 1080 | 0.8836         | 0.5010          | 0.8856  | 0.8816    |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1