--- library_name: transformers language: - en license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9132344865458539 --- # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3919 - Accuracy: 0.9132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3365 | 1.0 | 6547 | 0.2398 | 0.9065 | | 0.1938 | 2.0 | 13094 | 0.2898 | 0.9109 | | 0.1171 | 3.0 | 19641 | 0.3919 | 0.9132 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1