File size: 2,039 Bytes
70b741b 6685115 70b741b 6685115 70b741b 6685115 70b741b 6685115 70b741b 6685115 70b741b e779c6d 70b741b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-cased-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.910784071234232
- name: F1
type: f1
value: 0.8782365054180873
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-sst2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3776
- Accuracy: 0.9108
- F1: 0.8782
- Combined Score: 0.8945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Combined Score | F1 | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:--------------:|:------:|:---------------:|
| 0.2948 | 1.0 | 22741 | 0.9005 | 0.8834 | 0.8664 | 0.2470 |
| 0.1923 | 2.0 | 45482 | 0.9049 | 0.8884 | 0.8720 | 0.2723 |
| 0.1339 | 3.0 | 68223 | 0.9109 | 0.8954 | 0.8799 | 0.3585 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|