--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-cased-finetuned-qqp results: [] --- # bert-base-cased-finetuned-qqp This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9109 - Combined Score: 0.8957 - F1: 0.8805 - Loss: 0.3568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Combined Score | F1 | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:--------------:|:------:|:---------------:| | 0.2942 | 1.0 | 22741 | 0.9009 | 0.8845 | 0.8681 | 0.2476 | | 0.1919 | 2.0 | 45482 | 0.9080 | 0.8920 | 0.8761 | 0.2706 | | 0.1342 | 3.0 | 68223 | 0.9109 | 0.8957 | 0.8805 | 0.3568 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1