--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: jpqd-swin-b-15eph-r1.00-s2e5-mock-main-merge-pr2 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9144158415841585 --- # jpqd-swin-b-15eph-r1.00-s2e5-mock-main-merge-pr2 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2970 - Accuracy: 0.9144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.8787 | 0.42 | 500 | 3.9971 | 0.7163 | | 0.8429 | 0.84 | 1000 | 0.6450 | 0.8678 | | 0.8561 | 1.27 | 1500 | 0.4160 | 0.8945 | | 0.5777 | 1.69 | 2000 | 0.3664 | 0.9006 | | 12.3601 | 2.11 | 2500 | 12.0328 | 0.9023 | | 49.0606 | 2.54 | 3000 | 48.5000 | 0.8526 | | 75.3173 | 2.96 | 3500 | 75.5341 | 0.6942 | | 93.6153 | 3.38 | 4000 | 93.3091 | 0.5929 | | 103.5744 | 3.8 | 4500 | 103.1211 | 0.5846 | | 107.7701 | 4.23 | 5000 | 108.0755 | 0.5398 | | 109.5736 | 4.65 | 5500 | 108.7624 | 0.5855 | | 1.8028 | 5.07 | 6000 | 1.0960 | 0.8179 | | 1.2549 | 5.49 | 6500 | 0.6560 | 0.8695 | | 0.7199 | 5.92 | 7000 | 0.5619 | 0.8769 | | 0.8874 | 6.34 | 7500 | 0.5151 | 0.8859 | | 0.7429 | 6.76 | 8000 | 0.4830 | 0.8898 | | 0.6759 | 7.19 | 8500 | 0.4681 | 0.8926 | | 0.5352 | 7.61 | 9000 | 0.4360 | 0.8956 | | 0.6021 | 8.03 | 9500 | 0.4202 | 0.8979 | | 0.5617 | 8.45 | 10000 | 0.3940 | 0.9003 | | 0.7235 | 8.88 | 10500 | 0.3915 | 0.9000 | | 0.5323 | 9.3 | 11000 | 0.3793 | 0.9017 | | 0.589 | 9.72 | 11500 | 0.3670 | 0.9051 | | 0.425 | 10.14 | 12000 | 0.3615 | 0.9059 | | 0.7103 | 10.57 | 12500 | 0.3479 | 0.9070 | | 0.6251 | 10.99 | 13000 | 0.3472 | 0.9073 | | 0.623 | 11.41 | 13500 | 0.3353 | 0.9088 | | 0.6012 | 11.83 | 14000 | 0.3292 | 0.9098 | | 0.4984 | 12.26 | 14500 | 0.3230 | 0.9112 | | 0.4763 | 12.68 | 15000 | 0.3158 | 0.9109 | | 0.3209 | 13.1 | 15500 | 0.3120 | 0.9123 | | 0.4854 | 13.52 | 16000 | 0.3057 | 0.9126 | | 0.5472 | 13.95 | 16500 | 0.3032 | 0.9134 | | 0.3264 | 14.37 | 17000 | 0.3013 | 0.9134 | | 0.4136 | 14.79 | 17500 | 0.2977 | 0.9141 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2