--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: cls-comment-phobert-base-v2-v2.4 results: [] --- # cls-comment-phobert-base-v2-v2.4 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co./vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6177 - Accuracy: 0.9241 - F1 Score: 0.8919 - Recall: 0.8930 - Precision: 0.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 1.7008 | 0.96 | 100 | 1.5259 | 0.4623 | 0.1091 | 0.1687 | 0.2296 | | 1.4089 | 1.91 | 200 | 1.1875 | 0.6568 | 0.2499 | 0.2948 | 0.2170 | | 1.0776 | 2.87 | 300 | 0.9009 | 0.8038 | 0.5304 | 0.5309 | 0.5333 | | 0.8625 | 3.83 | 400 | 0.7617 | 0.8575 | 0.6321 | 0.6372 | 0.7107 | | 0.7245 | 4.78 | 500 | 0.6894 | 0.8818 | 0.7282 | 0.7214 | 0.8803 | | 0.6573 | 5.74 | 600 | 0.6651 | 0.8968 | 0.8406 | 0.8213 | 0.8770 | | 0.6082 | 6.7 | 700 | 0.6335 | 0.9079 | 0.8630 | 0.8667 | 0.8595 | | 0.5674 | 7.66 | 800 | 0.6363 | 0.9106 | 0.8692 | 0.8795 | 0.8621 | | 0.5477 | 8.61 | 900 | 0.6269 | 0.9151 | 0.8776 | 0.8693 | 0.8877 | | 0.5256 | 9.57 | 1000 | 0.6178 | 0.9205 | 0.8835 | 0.8849 | 0.8826 | | 0.5148 | 10.53 | 1100 | 0.6214 | 0.9199 | 0.8796 | 0.8839 | 0.8762 | | 0.4999 | 11.48 | 1200 | 0.6158 | 0.9229 | 0.8856 | 0.8853 | 0.8862 | | 0.4916 | 12.44 | 1300 | 0.6186 | 0.9232 | 0.8839 | 0.8795 | 0.8888 | | 0.479 | 13.4 | 1400 | 0.6285 | 0.9202 | 0.8847 | 0.8833 | 0.8864 | | 0.4812 | 14.35 | 1500 | 0.6177 | 0.9241 | 0.8919 | 0.8930 | 0.8911 | | 0.4667 | 15.31 | 1600 | 0.6206 | 0.9256 | 0.8848 | 0.8853 | 0.8843 | | 0.4668 | 16.27 | 1700 | 0.6201 | 0.9265 | 0.8854 | 0.8876 | 0.8837 | | 0.4635 | 17.22 | 1800 | 0.6252 | 0.9253 | 0.8901 | 0.8877 | 0.8927 | | 0.4593 | 18.18 | 1900 | 0.6264 | 0.9274 | 0.8891 | 0.8899 | 0.8887 | | 0.4538 | 19.14 | 2000 | 0.6228 | 0.9265 | 0.8891 | 0.8913 | 0.8870 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2