Pushing the 2nd version of Lunar lander RL model to HF Hub
Browse files- Lunar_Lander_VSrinivas.zip +2 -2
- Lunar_Lander_VSrinivas/data +23 -23
- Lunar_Lander_VSrinivas/policy.optimizer.pth +1 -1
- Lunar_Lander_VSrinivas/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
Lunar_Lander_VSrinivas.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69c07326ce6acf410222df3c19a5cf71ee185c9d9f26cfcceb7cfbe8d613cea2
|
3 |
+
size 148630
|
Lunar_Lander_VSrinivas/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,14 +76,14 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c3e26aab880>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3e26aab910>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3e26aab9a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3e26aaba30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c3e26aabac0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c3e26aabb50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3e26aabbe0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3e26aabc70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c3e26aabd00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3e26aabd90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3e26aabe20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3e26aabeb0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c3e26a52a80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1702048300225762188,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqOVL2S1ug8ldy8PR6rh75f7aa8r0fGPAAAAAAAAAAATaS/vSvyZD+NBuM9nK0Ivz+nw72GeBw+AAAAAAAAAADmeI2991m5P7oTCL/KshS8MbPVvPZhWL4AAAAAAAAAAA2yfb7XwEE/hqgpPbUw5r6iiIm+Pmj7PQAAAAAAAAAAM+zIvPbHKzs6WA2+7sEavs6WxLzfRYk/AAAAAAAAAAAmAr4+KTR4P0OUcD4WkA+/2f0HP7Z0Ez0AAAAAAAAAAOC0Cj4sUGw/YZA5PhB/DL89aoI+4l6DPQAAAAAAAAAAjTK/PfMYuT9iOt8+x8MzvgNbGbwLAO09AAAAAAAAAAAAoHq8XFNzulYfLjq5jo61eH6sujysSrkAAIA/AACAP2aOSTzXY2U4xO65sxVjsC+L9647boO7MwAAgD8AAIA/gLdkvUo0XD92cBW9Hx0Cv/Bbq73FtVC8AAAAAAAAAACzMxS9SnclPs7O4D182aq+oCwoO6A1tjwAAAAAAAAAAJr9aD16IiA+hbxTvm56a758l8G9HPaEvQAAAAAAAAAAGos/Pa0ImT+m8CE+hM8avw0QYz0WSOs9AAAAAAAAAABmkv87p6k6P/8jAjz/wPC+HXnGPMZhL7sAAAAAAAAAADMF1Dws1lE+Xj/AvSOXvb6A38u9CrtOOwAAAAAAAAAAmpkHuCn4b7q2/O24s6qVszI7tLqv0go4AACAPwAAgD+AbBo9XMNsuis5YrLWxvKuJLIduW5gvTIAAIA/AACAP+71j772kCe8plKANPSkyTIhDJs98oALtAAAgD8AAIA/TRZGPSvKsj7gKy28tKOsvmPXLD1+0Ha9AAAAAAAAAACgtSe+uPelPw1Lxr7v3xS/9XyVvl0P470AAAAAAAAAAADw3bw6Np8/uwDAvRN5E7/GUzO9WhefvAAAAAAAAAAAMyy+vDlvGD9D9Og9k4XRvjg20jq7x949AAAAAAAAAAANw6o9BbKpu4DG8jrLe5s8OFUQvfqCgz0AAIA/AACAP2qq775Vrcq90Fe8vs/tXL26pYy+hlXkvgAAgD8AAIA/LcsmvnTqID+B2Kk+JbDfvppvMb37HlU+AAAAAAAAAADNhgE8cWULu9ZBHjzNlNw756/WuzMuPLwAAIA/AACAP81GR7yuzZ26CWQAM8Rz6zDj1M46ScuTswAAgD8AAIA/AKuyPc96mz9wINE+Y7givy2NCj6DqIU+AAAAAAAAAABmXoW8aQ8BvK+VODvvd6g81DZkvYDoiz0AAIA/AACAP5pt8jtJX7g/BW1/Pg0x0j5USQq8rehkvQAAAAAAAAAAE4OiPmfmLz/kkoq+SQEHvxnDrT6ploK+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEr6o2n88+MAWyUS+iMAXSUR0Cxn784PwuvdX2UKGgGR0ByvRNi6QNkaAdL7mgIR0Cxn8kD+zdDdX2UKGgGR0BxhRZeRgZ1aAdLwWgIR0Cxn93hn8KpdX2UKGgGR0BxTiTpxFRYaAdLxGgIR0Cxn980pEx7dX2UKGgGR0BvkrIRywOfaAdL02gIR0Cxn/Ljo6jndX2UKGgGR0BzqtkCmuTzaAdL6mgIR0Cxn/nctXgcdX2UKGgGR0Bw8l/ustCiaAdL2GgIR0Cxn/p/kNnXdX2UKGgGR0Bx0RHc1wYMaAdLyWgIR0CxoAGA5JbudX2UKGgGR0ByRmKXOW0JaAdLvmgIR0CxoBCQgcLjdX2UKGgGR0BwbIC7sfJWaAdL6WgIR0CxoB8CT2WZdX2UKGgGR0BxxtWvKU3XaAdL3WgIR0CxoCF49ovjdX2UKGgGR0BvaNdiUgSwaAdL72gIR0CxoFVkQPI5dX2UKGgGR0BwIN0Syt3faAdL42gIR0CxoF0zj3mFdX2UKGgGR0BxRCuNgjQiaAdL0mgIR0CxoGIFvAGjdX2UKGgGR0Bwo0p8WsRyaAdL62gIR0CxoGme18b8dX2UKGgGR0BxS0osqaw2aAdL22gIR0CxoJIg7o0RdX2UKGgGR0BuzM1l5GBnaAdLzmgIR0CxoJZqynk1dX2UKGgGR0BvjUzoEB8yaAdL6mgIR0CxoK2NvOyFdX2UKGgGR0BysRD6WPcSaAdLyGgIR0CxoMPP1L8KdX2UKGgGR0Byk5+PRzBAaAdLzGgIR0CxoNajN6gNdX2UKGgGR0ByBE8q4H5aaAdLw2gIR0CxoN/hZQpGdX2UKGgGR0A3sSzPa+N+aAdLrmgIR0CxoRI9ovi+dX2UKGgGR0BzSe6Gxlg/aAdLz2gIR0CxoTf6O5rhdX2UKGgGR0Bv0s7IT4+KaAdL5GgIR0CxoUPomoitdX2UKGgGR0BxiojJMg2ZaAdL2GgIR0CxoUqsZHd5dX2UKGgGR0ByOLMfRu0kaAdL12gIR0CxoXDyFwkxdX2UKGgGR0BxHUzEaVD8aAdL1GgIR0CxoZtsWO6vdX2UKGgGR0Bwg2QPqcEvaAdL9WgIR0Cxob4PK+zudX2UKGgGR0BwkIqFyq+8aAdL32gIR0Cxobu4Cp3pdX2UKGgGR0Bx6RIatLcsaAdL2mgIR0CxocFJcxCZdX2UKGgGR0BxV7e1rqMWaAdLymgIR0Cxod3BDXvqdX2UKGgGR0BzlJTJhfBvaAdL2mgIR0CxodrXlKbsdX2UKGgGR0BxBCXv6TGHaAdLx2gIR0Cxod5mAbyZdX2UKGgGR0ByS3OVxCIDaAdL7mgIR0CxoeIO6NEPdX2UKGgGR0BwgIRNATqTaAdL5GgIR0CxoemSdOIqdX2UKGgGR0BzSsiRnvlVaAdL12gIR0CxogS2lVLjdX2UKGgGR0Bx0JI7Njb0aAdL12gIR0CxogwvUSZjdX2UKGgGR0BuGNDneSB9aAdL12gIR0Cxoi9mYjSodX2UKGgGR0BxLO2c8TzvaAdL9mgIR0CxojtVR1oydX2UKGgGR0BwOPZFocrBaAdL3mgIR0CxokSQDFIedX2UKGgGR0Bwq0JhOP/8aAdLxmgIR0Cxok/lMh5gdX2UKGgGR0BzfkekpI+XaAdNAAFoCEdAsaJTijtXxXV9lChoBkdAbxoWOZLIxWgHS+1oCEdAsaJZDMNc4nV9lChoBkdAcL9EdvKlpGgHS9xoCEdAsaJ3aHsTnXV9lChoBkdAcv72Jzkp7WgHTWABaAhHQLGik36AOKB1fZQoaAZHQHFxjH0btJFoB0vnaAhHQLGimU6xPft1fZQoaAZHQHIpWsV+I/JoB0vHaAhHQLGiu1eBxxV1fZQoaAZHQHDMUYwZflZoB0viaAhHQLGi9/WDpTx1fZQoaAZHQHKkkn1FpfxoB0vwaAhHQLGjA+UyHmB1fZQoaAZHQHJfFHavicZoB0vhaAhHQLGjMVJcxCZ1fZQoaAZHQHDRink1dgRoB00AAWgIR0CxozWu1WsBdX2UKGgGR0BxS2/yoXKsaAdNEAFoCEdAsaMyIRAbAHV9lChoBkdAc9gY8dPtUmgHS+9oCEdAsaNu8an753V9lChoBkdAcwEXUYsND2gHS9RoCEdAsaOOBVdX1nV9lChoBkdAcmVnbqQiimgHS+JoCEdAsaPRXmvGInV9lChoBkdAcV3unuRcNmgHS+xoCEdAsaP9TwUg0XV9lChoBkdAcpMqYqoZRGgHTQABaAhHQLGj+wkgOjJ1fZQoaAZHQHE9LFOwgT1oB0vLaAhHQLGj+tUn5SF1fZQoaAZHQFAm0VJtix5oB0uVaAhHQLGkBJZGKAJ1fZQoaAZHQHOPsUqQRwtoB0vgaAhHQLGkC6r/82t1fZQoaAZHQHNJA5BC2MNoB0vLaAhHQLGkWHyVfNR1fZQoaAZHQHELA8nuy/toB0vaaAhHQLGkXieumrN1fZQoaAZHQHGwaySmqHZoB0vBaAhHQLGkdWxQizN1fZQoaAZHQHJmp3LV4HJoB0vZaAhHQLGkihoduHh1fZQoaAZHQHHKNPYWcjJoB0voaAhHQLGkkYDDCP91fZQoaAZHQHE9/crRSgpoB0vraAhHQLGkomAskIJ1fZQoaAZHQHM8mW6bvw5oB0vHaAhHQLGk18Rtgrp1fZQoaAZHQHFOE3Ov+wVoB0vyaAhHQLGk4kwevIR1fZQoaAZHQG/j7qptJnRoB0v2aAhHQLGk7m6oVEd1fZQoaAZHQHFITuSfUWloB0vqaAhHQLGk/VDa4+d1fZQoaAZHQHKNHggow25oB0v2aAhHQLGlA7nPmgd1fZQoaAZHQHBpC9du5z5oB0vYaAhHQLGlB+xnnMd1fZQoaAZHQHIlDhgmZ3NoB0vSaAhHQLGlErhzeXR1fZQoaAZHQHKIl+iJwbVoB0vUaAhHQLGlIP5pJwt1fZQoaAZHQHCothmXgLtoB0vaaAhHQLGlJ/Q0GeN1fZQoaAZHQHECRkZrHlxoB0vIaAhHQLGlT8hcJMR1fZQoaAZHQHBI3Pu5SWJoB0vOaAhHQLGlWvsJIDp1fZQoaAZHQHLH7L2YfGNoB0veaAhHQLGlaIEr5Ip1fZQoaAZHQHDsYSQHRkVoB0vgaAhHQLGlxZnL7oB1fZQoaAZHQHO35RO1v2poB0vBaAhHQLGlz1dgOSZ1fZQoaAZHQHMNduYQarFoB0vHaAhHQLGl52aUiY91fZQoaAZHQHPHZRKpT/BoB0vEaAhHQLGmGNN8E3d1fZQoaAZHQHGHAwwj+rFoB0voaAhHQLGmKzWf9P11fZQoaAZHQHGyScwxnFpoB0vyaAhHQLGmaOd5IH11fZQoaAZHQHFSZ9NN8E5oB00DAWgIR0Cxpmshs67vdX2UKGgGR0BzhZBiTdLyaAdLv2gIR0Cxpn/+OwPidX2UKGgGR0BxVJ8CxNZeaAdL8WgIR0Cxpq6Gxlg/dX2UKGgGR0BzWZ/Tb349aAdL1mgIR0CxprlZs9B9dX2UKGgGR0BzKfAFgUlBaAdL4mgIR0CxprgY51eTdX2UKGgGR0BwEhMXaakRaAdL3mgIR0CxpssRg7YDdX2UKGgGR0BxSJWV/tpmaAdL3GgIR0CxptIbXHzZdX2UKGgGR0ByLgrBj4HpaAdLyGgIR0Cxpugi3XqadX2UKGgGR0ByovUb1h9caAdLzmgIR0CxpwaXfIjodX2UKGgGR0BxYVreqJdjaAdLyWgIR0Cxpwv1QIlddX2UKGgGR0BzRjmNipeeaAdL6WgIR0CxpywTRIBjdX2UKGgGR0BuxEg8r7O3aAdL22gIR0Cxpy2XLNfPdX2UKGgGR0BylyWD6FdtaAdL7mgIR0CxpzxuCPIXdX2UKGgGR0BMQvuXu3MIaAdLoWgIR0Cxpztnwob5dX2UKGgGR0Bx9j8/D+BIaAdLy2gIR0Cxp1LhWHUMdX2UKGgGR0BzbWup0fYBaAdL3WgIR0Cxp2bB0p3HdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 368,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 32,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
Lunar_Lander_VSrinivas/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37b95e9056b9befd03c3a5164fc5a802f2cfaaa917543e475eeb26297d1900c
|
3 |
size 88362
|
Lunar_Lander_VSrinivas/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33e318a2be5a88900d63aa7a6ace3207e7029c5017bbf7b34b974d5c911a1ca2
|
3 |
size 43762
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 273.84 +/- 27.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6b52584280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6b52584310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6b525843a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6b52584430>", "_build": "<function ActorCriticPolicy._build at 0x7c6b525844c0>", "forward": "<function ActorCriticPolicy.forward at 0x7c6b52584550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6b525845e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6b52584670>", "_predict": "<function ActorCriticPolicy._predict at 0x7c6b52584700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6b52584790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6b52584820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6b525848b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6b5271fd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702044197491452782, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN0Cd771vnU/4WahvjVEer6pqpG+x+VHvgAAAAAAAAAAZuHQPGIdDT8erSW9aUF5vqm//zvkLb29AAAAAAAAAAAmsAe+cTcFPpY/ID6CdWW+ECjwPNrnsLsAAAAAAAAAAJpnPr7mzyc/K98KPgE9iL4SieE8rvuGPAAAAAAAAAAApv5YvqvWlz+KEg++uuGAvmw9ob79SQ0+AAAAAAAAAAAA6Uw94VqZug1O5biCpdizX4bqOjV6BDgAAIA/AACAP+3SLr6eryw/VTc7Pg78iL4wlys8tqcsPQAAAAAAAAAAE9R8Pv9AYz82k+g9qaecvvibJD7N0+O9AAAAAAAAAADNuaA87JnIufX5LbYoSwMzRZhYu2UzUzUAAIA/AACAP810nr1IV5m6jYVUOwcHZjnIF8k6QKP4uQAAgD8AAIA/Zt2avXqMHD86iHM9Qh2SvnmnXb1+JwA+AAAAAAAAAACtCg0+avVQP83WzLwmw3S+X3fXO5rHPrwAAAAAAAAAAALKiL4dJRo/RnZBPt7Whb75WDi92mZ2uwAAAAAAAAAAM9lqvT/+kz/jAam9TJiPvhoTF74K4i69AAAAAAAAAAAz1zM92M4+P95OrjxE35S+wSOmPFpocL0AAAAAAAAAAOYsur32jCK673gDtc4ICrBxd5A6nU1jNAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDLhQzk6tGMAWyUTW8CjAF0lEdAofdLr9l2/3V9lChoBkdAYKrTmW+oL2gHTegDaAhHQKH3wRvm5lR1fZQoaAZHQG31Fo11nuloB03OAWgIR0Ch+IE8q4H5dX2UKGgGR0BytNaV2Rq5aAdNZgFoCEdAofnAi7kGRnV9lChoBkdAcIuifg75mGgHTUwDaAhHQKH6fwzch1V1fZQoaAZHQG01sJ6Y3NtoB025AWgIR0Ch+2NKAavSdX2UKGgGR0BwVyg00m+kaAdNEQJoCEdAof2jA8B+4XV9lChoBkdARGnP1L8JlmgHTQsBaAhHQKH9zIZIg/11fZQoaAZHQHG9DOLR8dBoB03hAWgIR0Ch/yl+/gzhdX2UKGgGR0ByTGgZjx0/aAdNdgFoCEdAof83mNipenV9lChoBkdAcZBwUg0TDmgHTbMBaAhHQKIAN92ovSN1fZQoaAZHQGP+1ZDArQRoB03oA2gIR0CiAFgEEC/5dX2UKGgGR0BtxtzZHuqnaAdNhwFoCEdAogJNvuPV/nV9lChoBkdAcA21P3ztkWgHTa4BaAhHQKICjOTq0MR1fZQoaAZHQGvhlCb+cYtoB02lAWgIR0CiBQo3R5TqdX2UKGgGR0BgT2vfTCtSaAdN6ANoCEdAogZmsLfDUHV9lChoBkdAckXGucMEzWgHTTYDaAhHQKIIPFZxJd11fZQoaAZHQFrsst03fhxoB03oA2gIR0CiCYXI2fkFdX2UKGgGR0BwNxE9dNWVaAdNOgJoCEdAogoOgBcRlHV9lChoBkdAYsTm4iHIqGgHTegDaAhHQKIKWfuCwr11fZQoaAZHQG1OHLJSzgNoB00vAmgIR0CiFTBAWznidX2UKGgGR0AzRgn+hoM8aAdNDAFoCEdAohWhB5X2d3V9lChoBkdAcALu5jH4oWgHTeUBaAhHQKIWAn2Iwdt1fZQoaAZHQG/ZNo8IRiBoB00QAmgIR0CiFv/c32mIdX2UKGgGR0Bi6YMtsenyaAdN6ANoCEdAohcydlNDdHV9lChoBkdAcQ3+CbtqpWgHTeEBaAhHQKIYCe0Xxe91fZQoaAZHQGzpUa6z3RJoB03SAmgIR0CiGsdcKPXDdX2UKGgGR0BtZjBVMmF8aAdNagFoCEdAohu1joZAIXV9lChoBkdAca7zOoo/imgHTWgBaAhHQKIcEM3qAz51fZQoaAZHQGxduhbnoxJoB028AWgIR0CiHBsjeKsNdX2UKGgGR0BLwWF36hxpaAdL4WgIR0CiHXtliBoVdX2UKGgGR0BxJ7A9FF2FaAdNTQNoCEdAoh8EjFAE+3V9lChoBkdAZbfZJ04io2gHTegDaAhHQKIfUZzgdfd1fZQoaAZHQHC2i+HrQgNoB01RAWgIR0CiH8EZzgdfdX2UKGgGR0Bul7gwXZXdaAdNjQFoCEdAoiBvn+yZ8nV9lChoBkdAcTkuk1uR92gHTUsBaAhHQKIheMhouf51fZQoaAZHQGYtA+hXbM5oB03oA2gIR0CiIZfVI7NjdX2UKGgGR0Bvaei5/b0waAdN7AFoCEdAoiLo+nqFAXV9lChoBkdAcAmfgrH2iGgHTUkDaAhHQKIjwCyyD7J1fZQoaAZHQHDvxOpKjBVoB00+AWgIR0CiJFwCCBf8dX2UKGgGR0BsdSExqO94aAdN0QJoCEdAoiSJhF3IMnV9lChoBkdAb3hXiiqQzWgHTc4DaAhHQKIkxKhcqvx1fZQoaAZHQDrBP8AJb+toB0vzaAhHQKIkwtL+PzZ1fZQoaAZHQHGhYBq9GqhoB016AWgIR0CiJYW2Xsw+dX2UKGgGR0Bvas/Y8Md+aAdNmwFoCEdAoiX8ZHd43XV9lChoBkdASt158jRlYmgHS+ZoCEdAoiZYpUgjhXV9lChoBkdAbk5uXNTtLWgHTVcBaAhHQKImjfVI7Nl1fZQoaAZHQHI8x6rvLHNoB01+AmgIR0CiJuReLNwBdX2UKGgGR0BtHuAVfu1GaAdNZAFoCEdAoifC4hEBsHV9lChoBkdAblk+rU9ZBGgHTckBaAhHQKIn3DOTq0N1fZQoaAZHQG4ygmzByjpoB02PAWgIR0CiJ/0zCUHIdX2UKGgGR0BwKWqtHQQdaAdNKQJoCEdAoigaVKPGQ3V9lChoBkdAcBT/T9bX6WgHTY8BaAhHQKIpNin5zo51fZQoaAZHQHCjonKGL1poB01PAWgIR0CiKoesgdOqdX2UKGgGR0BvaC+FlCkXaAdNxAFoCEdAojO1a6jFh3V9lChoBkdAbSZc1wYLs2gHTXQBaAhHQKIz/QrMC911fZQoaAZHQHCghInSfDloB01aAWgIR0CiNFvfbblBdX2UKGgGR0Buc/PPcBU8aAdNVgFoCEdAojXC0IC2dHV9lChoBkdAccsX1J17pmgHTX4BaAhHQKI2EjxkNF11fZQoaAZHQHG43bEgntxoB02NAWgIR0CiNvCKziS8dX2UKGgGR0Bw/ZTP0I1MaAdN4wFoCEdAojcYVoHs1XV9lChoBkdAcC2TgVGkOGgHTV4BaAhHQKI4AaTfR/p1fZQoaAZHQHC0zIvJzT5oB02jAWgIR0CiOD0I9kjHdX2UKGgGR0BwwTTBqKxcaAdNSAJoCEdAojhkG1QZXXV9lChoBkdAMMRFy7wrlWgHTSsBaAhHQKI4iNjLB9F1fZQoaAZHQHB6TE3sHB1oB02DAWgIR0CiOJ8KohpydX2UKGgGR0Bs97iqABkqaAdNkwFoCEdAojjDjT8YRHV9lChoBkdAcYfa2F36h2gHTYoBaAhHQKI47Pnjhk11fZQoaAZHQEVpDfm9xqBoB0v/aAhHQKI47IOH3111fZQoaAZHQGvRxL0z0pVoB01MAmgIR0CiOP4lIEr5dX2UKGgGR0BO0Cp3os7NaAdL52gIR0CiOkS3solVdX2UKGgGR0ByLxnlGPPtaAdNSgFoCEdAojqJib2DhHV9lChoBkdAcU+QCCBf8mgHTT0BaAhHQKI7cWsRxtJ1fZQoaAZHQG/s5D7ZWaNoB02BAWgIR0CiO8vv8ZUDdX2UKGgGR0BwwoJ7b+LnaAdNRAFoCEdAojx/2RJVbXV9lChoBkdAcY2Pl+3H72gHTbQBaAhHQKI8h9DQZ4x1fZQoaAZHQHDDqe05U99oB01TAWgIR0CiPKxIre67dX2UKGgGR0Bv6olD4QBgaAdNRgFoCEdAoj1dh7Vrh3V9lChoBkdAa+zg1FYuCmgHTWMBaAhHQKI9vuKoAGV1fZQoaAZHQHDJ2VVxS51oB01FAWgIR0CiPiBzmwJPdX2UKGgGR0Buzuwqy4WlaAdNawFoCEdAoj4qtq59VnV9lChoBkdAcWazMA3kxWgHTWkBaAhHQKI+XVcUuct1fZQoaAZHQHAv5vxYq5NoB01iAWgIR0CiPpwrMC9zdX2UKGgGR0Bv/57RfF72aAdNbAFoCEdAoj7d4FA3UHV9lChoBkdAcNw8vEjxC2gHTb0BaAhHQKJAGT+vQnh1fZQoaAZHQHBTLkfcN6RoB03SAWgIR0CiQL99lVcVdX2UKGgGR0BwPWoqCpWFaAdNaQFoCEdAokDzgbZOBXV9lChoBkdAcDLToMa0hWgHTU8BaAhHQKJB4/vfCQ91fZQoaAZHQGueqG1x82JoB01fAWgIR0CiQ8Mmv4dqdX2UKGgGR0BybyattALRaAdNQQFoCEdAokR6s+3YtnV9lChoBkdAcImlD4QBgmgHTZMBaAhHQKJE2oLG7z11fZQoaAZHQHD5jriVB2RoB02TAWgIR0CiROM7+1jRdX2UKGgGR0Btz6KpDNQkaAdNbAFoCEdAokUL59E1EXV9lChoBkdAcBwDzAeq72gHTUQBaAhHQKJFEfPHDJl1fZQoaAZHQHGrpYoy9EloB00xAWgIR0CiRZxQizLPdX2UKGgGR0A02s0pEx7BaAdNEgFoCEdAokX0Z5zHTHV9lChoBkdAbG9XHR1HOWgHTVgBaAhHQKJGFV94NZx1fZQoaAZHQHCrLhm5DqpoB02WAWgIR0CiRsTeGfwrdX2UKGgGR0BuO4w7DEWJaAdNZQJoCEdAokbSgoPTX3V9lChoBkdAMCTsD4gzQGgHTSQBaAhHQKJG/XEIgNh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c3e26aab880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3e26aab910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3e26aab9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3e26aaba30>", "_build": "<function ActorCriticPolicy._build at 0x7c3e26aabac0>", "forward": "<function ActorCriticPolicy.forward at 0x7c3e26aabb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3e26aabbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3e26aabc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7c3e26aabd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3e26aabd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3e26aabe20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3e26aabeb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3e26a52a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702048300225762188, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqOVL2S1ug8ldy8PR6rh75f7aa8r0fGPAAAAAAAAAAATaS/vSvyZD+NBuM9nK0Ivz+nw72GeBw+AAAAAAAAAADmeI2991m5P7oTCL/KshS8MbPVvPZhWL4AAAAAAAAAAA2yfb7XwEE/hqgpPbUw5r6iiIm+Pmj7PQAAAAAAAAAAM+zIvPbHKzs6WA2+7sEavs6WxLzfRYk/AAAAAAAAAAAmAr4+KTR4P0OUcD4WkA+/2f0HP7Z0Ez0AAAAAAAAAAOC0Cj4sUGw/YZA5PhB/DL89aoI+4l6DPQAAAAAAAAAAjTK/PfMYuT9iOt8+x8MzvgNbGbwLAO09AAAAAAAAAAAAoHq8XFNzulYfLjq5jo61eH6sujysSrkAAIA/AACAP2aOSTzXY2U4xO65sxVjsC+L9647boO7MwAAgD8AAIA/gLdkvUo0XD92cBW9Hx0Cv/Bbq73FtVC8AAAAAAAAAACzMxS9SnclPs7O4D182aq+oCwoO6A1tjwAAAAAAAAAAJr9aD16IiA+hbxTvm56a758l8G9HPaEvQAAAAAAAAAAGos/Pa0ImT+m8CE+hM8avw0QYz0WSOs9AAAAAAAAAABmkv87p6k6P/8jAjz/wPC+HXnGPMZhL7sAAAAAAAAAADMF1Dws1lE+Xj/AvSOXvb6A38u9CrtOOwAAAAAAAAAAmpkHuCn4b7q2/O24s6qVszI7tLqv0go4AACAPwAAgD+AbBo9XMNsuis5YrLWxvKuJLIduW5gvTIAAIA/AACAP+71j772kCe8plKANPSkyTIhDJs98oALtAAAgD8AAIA/TRZGPSvKsj7gKy28tKOsvmPXLD1+0Ha9AAAAAAAAAACgtSe+uPelPw1Lxr7v3xS/9XyVvl0P470AAAAAAAAAAADw3bw6Np8/uwDAvRN5E7/GUzO9WhefvAAAAAAAAAAAMyy+vDlvGD9D9Og9k4XRvjg20jq7x949AAAAAAAAAAANw6o9BbKpu4DG8jrLe5s8OFUQvfqCgz0AAIA/AACAP2qq775Vrcq90Fe8vs/tXL26pYy+hlXkvgAAgD8AAIA/LcsmvnTqID+B2Kk+JbDfvppvMb37HlU+AAAAAAAAAADNhgE8cWULu9ZBHjzNlNw756/WuzMuPLwAAIA/AACAP81GR7yuzZ26CWQAM8Rz6zDj1M46ScuTswAAgD8AAIA/AKuyPc96mz9wINE+Y7givy2NCj6DqIU+AAAAAAAAAABmXoW8aQ8BvK+VODvvd6g81DZkvYDoiz0AAIA/AACAP5pt8jtJX7g/BW1/Pg0x0j5USQq8rehkvQAAAAAAAAAAE4OiPmfmLz/kkoq+SQEHvxnDrT6ploK+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEr6o2n88+MAWyUS+iMAXSUR0Cxn784PwuvdX2UKGgGR0ByvRNi6QNkaAdL7mgIR0Cxn8kD+zdDdX2UKGgGR0BxhRZeRgZ1aAdLwWgIR0Cxn93hn8KpdX2UKGgGR0BxTiTpxFRYaAdLxGgIR0Cxn980pEx7dX2UKGgGR0BvkrIRywOfaAdL02gIR0Cxn/Ljo6jndX2UKGgGR0BzqtkCmuTzaAdL6mgIR0Cxn/nctXgcdX2UKGgGR0Bw8l/ustCiaAdL2GgIR0Cxn/p/kNnXdX2UKGgGR0Bx0RHc1wYMaAdLyWgIR0CxoAGA5JbudX2UKGgGR0ByRmKXOW0JaAdLvmgIR0CxoBCQgcLjdX2UKGgGR0BwbIC7sfJWaAdL6WgIR0CxoB8CT2WZdX2UKGgGR0BxxtWvKU3XaAdL3WgIR0CxoCF49ovjdX2UKGgGR0BvaNdiUgSwaAdL72gIR0CxoFVkQPI5dX2UKGgGR0BwIN0Syt3faAdL42gIR0CxoF0zj3mFdX2UKGgGR0BxRCuNgjQiaAdL0mgIR0CxoGIFvAGjdX2UKGgGR0Bwo0p8WsRyaAdL62gIR0CxoGme18b8dX2UKGgGR0BxS0osqaw2aAdL22gIR0CxoJIg7o0RdX2UKGgGR0BuzM1l5GBnaAdLzmgIR0CxoJZqynk1dX2UKGgGR0BvjUzoEB8yaAdL6mgIR0CxoK2NvOyFdX2UKGgGR0BysRD6WPcSaAdLyGgIR0CxoMPP1L8KdX2UKGgGR0Byk5+PRzBAaAdLzGgIR0CxoNajN6gNdX2UKGgGR0ByBE8q4H5aaAdLw2gIR0CxoN/hZQpGdX2UKGgGR0A3sSzPa+N+aAdLrmgIR0CxoRI9ovi+dX2UKGgGR0BzSe6Gxlg/aAdLz2gIR0CxoTf6O5rhdX2UKGgGR0Bv0s7IT4+KaAdL5GgIR0CxoUPomoitdX2UKGgGR0BxiojJMg2ZaAdL2GgIR0CxoUqsZHd5dX2UKGgGR0ByOLMfRu0kaAdL12gIR0CxoXDyFwkxdX2UKGgGR0BxHUzEaVD8aAdL1GgIR0CxoZtsWO6vdX2UKGgGR0Bwg2QPqcEvaAdL9WgIR0Cxob4PK+zudX2UKGgGR0BwkIqFyq+8aAdL32gIR0Cxobu4Cp3pdX2UKGgGR0Bx6RIatLcsaAdL2mgIR0CxocFJcxCZdX2UKGgGR0BxV7e1rqMWaAdLymgIR0Cxod3BDXvqdX2UKGgGR0BzlJTJhfBvaAdL2mgIR0CxodrXlKbsdX2UKGgGR0BxBCXv6TGHaAdLx2gIR0Cxod5mAbyZdX2UKGgGR0ByS3OVxCIDaAdL7mgIR0CxoeIO6NEPdX2UKGgGR0BwgIRNATqTaAdL5GgIR0CxoemSdOIqdX2UKGgGR0BzSsiRnvlVaAdL12gIR0CxogS2lVLjdX2UKGgGR0Bx0JI7Njb0aAdL12gIR0CxogwvUSZjdX2UKGgGR0BuGNDneSB9aAdL12gIR0Cxoi9mYjSodX2UKGgGR0BxLO2c8TzvaAdL9mgIR0CxojtVR1oydX2UKGgGR0BwOPZFocrBaAdL3mgIR0CxokSQDFIedX2UKGgGR0Bwq0JhOP/8aAdLxmgIR0Cxok/lMh5gdX2UKGgGR0BzfkekpI+XaAdNAAFoCEdAsaJTijtXxXV9lChoBkdAbxoWOZLIxWgHS+1oCEdAsaJZDMNc4nV9lChoBkdAcL9EdvKlpGgHS9xoCEdAsaJ3aHsTnXV9lChoBkdAcv72Jzkp7WgHTWABaAhHQLGik36AOKB1fZQoaAZHQHFxjH0btJFoB0vnaAhHQLGimU6xPft1fZQoaAZHQHIpWsV+I/JoB0vHaAhHQLGiu1eBxxV1fZQoaAZHQHDMUYwZflZoB0viaAhHQLGi9/WDpTx1fZQoaAZHQHKkkn1FpfxoB0vwaAhHQLGjA+UyHmB1fZQoaAZHQHJfFHavicZoB0vhaAhHQLGjMVJcxCZ1fZQoaAZHQHDRink1dgRoB00AAWgIR0CxozWu1WsBdX2UKGgGR0BxS2/yoXKsaAdNEAFoCEdAsaMyIRAbAHV9lChoBkdAc9gY8dPtUmgHS+9oCEdAsaNu8an753V9lChoBkdAcwEXUYsND2gHS9RoCEdAsaOOBVdX1nV9lChoBkdAcmVnbqQiimgHS+JoCEdAsaPRXmvGInV9lChoBkdAcV3unuRcNmgHS+xoCEdAsaP9TwUg0XV9lChoBkdAcpMqYqoZRGgHTQABaAhHQLGj+wkgOjJ1fZQoaAZHQHE9LFOwgT1oB0vLaAhHQLGj+tUn5SF1fZQoaAZHQFAm0VJtix5oB0uVaAhHQLGkBJZGKAJ1fZQoaAZHQHOPsUqQRwtoB0vgaAhHQLGkC6r/82t1fZQoaAZHQHNJA5BC2MNoB0vLaAhHQLGkWHyVfNR1fZQoaAZHQHELA8nuy/toB0vaaAhHQLGkXieumrN1fZQoaAZHQHGwaySmqHZoB0vBaAhHQLGkdWxQizN1fZQoaAZHQHJmp3LV4HJoB0vZaAhHQLGkihoduHh1fZQoaAZHQHHKNPYWcjJoB0voaAhHQLGkkYDDCP91fZQoaAZHQHE9/crRSgpoB0vraAhHQLGkomAskIJ1fZQoaAZHQHM8mW6bvw5oB0vHaAhHQLGk18Rtgrp1fZQoaAZHQHFOE3Ov+wVoB0vyaAhHQLGk4kwevIR1fZQoaAZHQG/j7qptJnRoB0v2aAhHQLGk7m6oVEd1fZQoaAZHQHFITuSfUWloB0vqaAhHQLGk/VDa4+d1fZQoaAZHQHKNHggow25oB0v2aAhHQLGlA7nPmgd1fZQoaAZHQHBpC9du5z5oB0vYaAhHQLGlB+xnnMd1fZQoaAZHQHIlDhgmZ3NoB0vSaAhHQLGlErhzeXR1fZQoaAZHQHKIl+iJwbVoB0vUaAhHQLGlIP5pJwt1fZQoaAZHQHCothmXgLtoB0vaaAhHQLGlJ/Q0GeN1fZQoaAZHQHECRkZrHlxoB0vIaAhHQLGlT8hcJMR1fZQoaAZHQHBI3Pu5SWJoB0vOaAhHQLGlWvsJIDp1fZQoaAZHQHLH7L2YfGNoB0veaAhHQLGlaIEr5Ip1fZQoaAZHQHDsYSQHRkVoB0vgaAhHQLGlxZnL7oB1fZQoaAZHQHO35RO1v2poB0vBaAhHQLGlz1dgOSZ1fZQoaAZHQHMNduYQarFoB0vHaAhHQLGl52aUiY91fZQoaAZHQHPHZRKpT/BoB0vEaAhHQLGmGNN8E3d1fZQoaAZHQHGHAwwj+rFoB0voaAhHQLGmKzWf9P11fZQoaAZHQHGyScwxnFpoB0vyaAhHQLGmaOd5IH11fZQoaAZHQHFSZ9NN8E5oB00DAWgIR0Cxpmshs67vdX2UKGgGR0BzhZBiTdLyaAdLv2gIR0Cxpn/+OwPidX2UKGgGR0BxVJ8CxNZeaAdL8WgIR0Cxpq6Gxlg/dX2UKGgGR0BzWZ/Tb349aAdL1mgIR0CxprlZs9B9dX2UKGgGR0BzKfAFgUlBaAdL4mgIR0CxprgY51eTdX2UKGgGR0BwEhMXaakRaAdL3mgIR0CxpssRg7YDdX2UKGgGR0BxSJWV/tpmaAdL3GgIR0CxptIbXHzZdX2UKGgGR0ByLgrBj4HpaAdLyGgIR0Cxpugi3XqadX2UKGgGR0ByovUb1h9caAdLzmgIR0CxpwaXfIjodX2UKGgGR0BxYVreqJdjaAdLyWgIR0Cxpwv1QIlddX2UKGgGR0BzRjmNipeeaAdL6WgIR0CxpywTRIBjdX2UKGgGR0BuxEg8r7O3aAdL22gIR0Cxpy2XLNfPdX2UKGgGR0BylyWD6FdtaAdL7mgIR0CxpzxuCPIXdX2UKGgGR0BMQvuXu3MIaAdLoWgIR0Cxpztnwob5dX2UKGgGR0Bx9j8/D+BIaAdLy2gIR0Cxp1LhWHUMdX2UKGgGR0BzbWup0fYBaAdL3WgIR0Cxp2bB0p3HdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 273.8443316127207, "std_reward": 27.58938783147887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-08T16:07:11.926465"}
|