vpelloin commited on
Commit
cc370a7
1 Parent(s): 48c7c73

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -1
README.md CHANGED
@@ -17,4 +17,41 @@ tags:
17
  - MEDIA
18
  ---
19
 
20
- # MEDIA NLU model trained on FlauBERT base uncased
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - MEDIA
18
  ---
19
 
20
+ # vpelloin/MEDIA_NLU_flaubert_uncased
21
+
22
+ This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/).
23
+ It maps each input words into outputs concepts tags (76 available).
24
+
25
+ This model is a fine-tuning of [`flaubert_base_uncased`](https://huggingface.co/flaubert/flaubert_base_uncased).
26
+
27
+ ## Usage with Pipeline
28
+ ```python
29
+ from transformers import pipeline
30
+
31
+ generator = pipeline(model="vpelloin/MEDIA_NLU_flaubert_finetuned", task="token-classification")
32
+
33
+ print(generator)
34
+ ```
35
+
36
+ ## Usage with AutoTokenizer/AutoModel
37
+ ```python
38
+ from transformers import (
39
+ AutoTokenizer,
40
+ AutoModelForTokenClassification
41
+ )
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained("vpelloin/MEDIA_NLU_flaubert_uncased")
44
+ model = AutoModelForTokenClassification.from_pretrained("vpelloin/MEDIA_NLU_flaubert_uncased")
45
+
46
+ sentences = [
47
+ "je voudrais réserver une chambre à paris pour demain et lundi",
48
+ "d'accord pour l'hôtel à quatre vingt dix euros la nuit",
49
+ "deux nuits s'il vous plait",
50
+ "dans un hôtel avec piscine à marseille"
51
+ ]
52
+ inputs = tokenizer(sentences, padding=True, return_tensors='pt')
53
+
54
+ outptus = model(**inputs).logits
55
+
56
+ print([[model.config.id2label[i] for i in b] for b in outptus.argmax(dim=-1).tolist()])
57
+ ```