commit files to HF hub
Browse files- README.md +16 -16
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -1
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -1
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
README.md
CHANGED
@@ -33,27 +33,27 @@ model-index:
|
|
33 |
metrics:
|
34 |
- name: BLEU4 (Question Generation)
|
35 |
type: bleu4_question_generation
|
36 |
-
value:
|
37 |
- name: ROUGE-L (Question Generation)
|
38 |
type: rouge_l_question_generation
|
39 |
-
value:
|
40 |
- name: METEOR (Question Generation)
|
41 |
type: meteor_question_generation
|
42 |
-
value:
|
43 |
- name: BERTScore (Question Generation)
|
44 |
type: bertscore_question_generation
|
45 |
-
value:
|
46 |
- name: MoverScore (Question Generation)
|
47 |
type: moverscore_question_generation
|
48 |
-
value:
|
49 |
---
|
50 |
|
51 |
# Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg`
|
52 |
-
This model is fine-tuned version of [
|
53 |
|
54 |
|
55 |
### Overview
|
56 |
-
- **Language model:** [
|
57 |
- **Language:** ko
|
58 |
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
|
59 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
@@ -89,14 +89,14 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
|
|
89 |
|
90 |
| | Score | Type | Dataset |
|
91 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
92 |
-
| BERTScore |
|
93 |
-
| Bleu_1 |
|
94 |
-
| Bleu_2 |
|
95 |
-
| Bleu_3 |
|
96 |
-
| Bleu_4 |
|
97 |
-
| METEOR |
|
98 |
-
| MoverScore |
|
99 |
-
| ROUGE_L |
|
100 |
|
101 |
|
102 |
|
@@ -108,7 +108,7 @@ The following hyperparameters were used during fine-tuning:
|
|
108 |
- input_types: paragraph_answer
|
109 |
- output_types: question
|
110 |
- prefix_types: None
|
111 |
-
- model:
|
112 |
- max_length: 512
|
113 |
- max_length_output: 32
|
114 |
- epoch: 12
|
|
|
33 |
metrics:
|
34 |
- name: BLEU4 (Question Generation)
|
35 |
type: bleu4_question_generation
|
36 |
+
value: 11.1
|
37 |
- name: ROUGE-L (Question Generation)
|
38 |
type: rouge_l_question_generation
|
39 |
+
value: 26.7
|
40 |
- name: METEOR (Question Generation)
|
41 |
type: meteor_question_generation
|
42 |
+
value: 28.4
|
43 |
- name: BERTScore (Question Generation)
|
44 |
type: bertscore_question_generation
|
45 |
+
value: 83.43
|
46 |
- name: MoverScore (Question Generation)
|
47 |
type: moverscore_question_generation
|
48 |
+
value: 82.96
|
49 |
---
|
50 |
|
51 |
# Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg`
|
52 |
+
This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
53 |
|
54 |
|
55 |
### Overview
|
56 |
+
- **Language model:** [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000)
|
57 |
- **Language:** ko
|
58 |
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
|
59 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
|
|
89 |
|
90 |
| | Score | Type | Dataset |
|
91 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
92 |
+
| BERTScore | 83.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
93 |
+
| Bleu_1 | 26.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
94 |
+
| Bleu_2 | 19.38 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
95 |
+
| Bleu_3 | 14.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
96 |
+
| Bleu_4 | 11.1 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
97 |
+
| METEOR | 28.4 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
98 |
+
| MoverScore | 82.96 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
99 |
+
| ROUGE_L | 26.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
100 |
|
101 |
|
102 |
|
|
|
108 |
- input_types: paragraph_answer
|
109 |
- output_types: question
|
110 |
- prefix_types: None
|
111 |
+
- model: ckpts/mt5-small-trimmed-ko-60000
|
112 |
- max_length: 512
|
113 |
- max_length_output: 32
|
114 |
- epoch: 12
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"validation": {"Bleu_1": 0.
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.2469589305070407, "Bleu_2": 0.17929096175700093, "Bleu_3": 0.13334615487740914, "Bleu_4": 0.10031671449173753}, "test": {"Bleu_1": 0.2610083483385116, "Bleu_2": 0.1916503161097078, "Bleu_3": 0.1442590601750084, "Bleu_4": 0.10976938811488973}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"validation": {"Bleu_1": 0.
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.27926709622675794, "Bleu_2": 0.20670723853390727, "Bleu_3": 0.15605306781087946, "Bleu_4": 0.11861208111415848, "METEOR": 0.28907438520972223, "ROUGE_L": 0.27483975174548364, "BERTScore": 0.8266659817641868, "MoverScore": 0.8304209016792409}, "test": {"Bleu_1": 0.26363311845116305, "Bleu_2": 0.19381936568005612, "Bleu_3": 0.1459009993513916, "Bleu_4": 0.1109524699536712, "METEOR": 0.28396979148540924, "ROUGE_L": 0.2669957671152088, "BERTScore": 0.8343427279664819, "MoverScore": 0.8296449373494392}}
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|