asahi417 commited on
Commit
1bb2272
1 Parent(s): a886ac0

commit files to HF hub

Browse files
README.md CHANGED
@@ -31,33 +31,33 @@ model-index:
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
- value: 0.0
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
- value: 0.03
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
- value: 0.15
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
- value: 87.82
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
- value: 55.75
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
- value: 0.0
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
- value: 0.0
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-15000-koquad-qa`
56
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ko-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-15000) for question answering task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-ko-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-15000)
61
  - **Language:** ko
62
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -93,16 +93,16 @@ output = pipe("question: 매드 클라운이 참가해 큰 화제를 모았던
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
- | AnswerExactMatch | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
- | AnswerF1Score | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
- | BERTScore | 87.82 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
- | Bleu_1 | 0.03 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
- | Bleu_2 | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
101
- | Bleu_3 | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
102
- | Bleu_4 | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
103
- | METEOR | 0.15 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
104
- | MoverScore | 55.75 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
105
- | ROUGE_L | 0.03 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
106
 
107
 
108
 
@@ -114,15 +114,15 @@ The following hyperparameters were used during fine-tuning:
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
- - model: vocabtrimmer/mt5-small-trimmed-ko-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
- - epoch: 11
121
- - batch: 32
122
- - lr: 0.0005
123
  - fp16: False
124
  - random_seed: 1
125
- - gradient_accumulation_steps: 2
126
  - label_smoothing: 0.15
127
 
128
  The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-15000-koquad-qa/raw/main/trainer_config.json).
 
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
+ value: 35.71
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
+ value: 78.59
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
+ value: 56.74
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
+ value: 97.44
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
+ value: 92.81
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
+ value: 82.66
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
+ value: 76.41
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-15000-koquad-qa`
56
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-15000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-15000) for question answering task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
+ - **Language model:** [ckpts/mt5-small-trimmed-ko-15000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-15000)
61
  - **Language:** ko
62
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
+ | AnswerExactMatch | 76.41 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
+ | AnswerF1Score | 82.66 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
+ | BERTScore | 97.44 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
+ | Bleu_1 | 71.78 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
+ | Bleu_2 | 62.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
101
+ | Bleu_3 | 50.82 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
102
+ | Bleu_4 | 35.71 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
103
+ | METEOR | 56.74 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
104
+ | MoverScore | 92.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
105
+ | ROUGE_L | 78.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
106
 
107
 
108
 
 
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
+ - model: ckpts/mt5-small-trimmed-ko-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
+ - epoch: 10
121
+ - batch: 64
122
+ - lr: 0.001
123
  - fp16: False
124
  - random_seed: 1
125
+ - gradient_accumulation_steps: 1
126
  - label_smoothing: 0.15
127
 
128
  The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-15000-koquad-qa/raw/main/trainer_config.json).
eval/metric.first.answer.paragraph_question.answer.lmqg_qg_koquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.0001735357917570349, "Bleu_2": 5.4893508763251e-12, "Bleu_3": 3.1118166081756604e-10, "Bleu_4": 2.3429363790604942e-09, "METEOR": 0.001349463190239542, "ROUGE_L": 0.00015367255452082703, "BERTScore": 0.8778950125961059, "MoverScore": 0.5579643960311111, "AnswerF1Score": 0.0, "AnswerExactMatch": 0.0}, "test": {"Bleu_1": 0.0003469812630117673, "Bleu_2": 7.760083328692983e-12, "Bleu_3": 3.9196226310565617e-10, "Bleu_4": 2.785692612025416e-09, "METEOR": 0.001544234012675439, "ROUGE_L": 0.00026273706707397363, "BERTScore": 0.878204313895374, "MoverScore": 0.5575302437571301, "AnswerF1Score": 0.0, "AnswerExactMatch": 0.0}}
 
1
+ {"validation": {"Bleu_1": 0.7100208768266482, "Bleu_2": 0.6200193491759389, "Bleu_3": 0.5080818087942911, "Bleu_4": 0.3632132399466476, "METEOR": 0.562890596693216, "ROUGE_L": 0.7740274367814087, "BERTScore": 0.9726204494717963, "MoverScore": 0.9231726569882075, "AnswerF1Score": 81.02993414647949, "AnswerExactMatch": 74.54040929587235}, "test": {"Bleu_1": 0.7178126912874191, "Bleu_2": 0.6263725853703858, "Bleu_3": 0.5082091784867124, "Bleu_4": 0.3570804063484529, "METEOR": 0.5673725371314443, "ROUGE_L": 0.7859017937674925, "BERTScore": 0.9743670976042045, "MoverScore": 0.9280690877126812, "AnswerF1Score": 82.66070721585822, "AnswerExactMatch": 76.41345820326049}}
eval/samples.test.hyp.paragraph_question.answer.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_question.answer.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff