--- license: bigscience-bloom-rail-1.0 language: - vi - en library_name: transformers pipeline_tag: text-generation tags: - bloom - causal-lm - pytorch model-index: - name: vlsp-2023-vllm/hoa-1b4 results: - task: name: Word prediction type: text-generation dataset: type: vlsp-2023-vllm/vi_lambada name: vi_lambada split: test metrics: - type: Perplexity value: 8.110657542682734 datasets: - vlsp-2023-vllm/vi_lambada metrics: - perplexity --- # Hoa 1B4 (Bloom architecture) Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English. Details will be available soon. To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường) ### How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-1b4") model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-1b4", low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số" input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device) gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1) print(tokenizer.batch_decode(gen_tokens)[0]) ```