---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6184
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en
widget:
- source_sentence: Agioi Konstantinos kai Eleni
sentences:
- Hello
- InputData
- InputData
- source_sentence: Looking for a property in Greece with a price up to [int2],[int2],
no television, central heating, alarm system, [int0]-[int0] bedrooms, and parking
sentences:
- Undo
- InputData
- InputData
- source_sentence: Εθνομάρτυρας Κυπριανός
sentences:
- InputData
- InputData
- Restart
- source_sentence: Yenierenkoy
sentences:
- InputData
- InputData
- InfoAbout
- source_sentence: Nicosie
sentences:
- InputData
- InputData
- InfoAbout
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on BAAI/bge-large-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vladislav-savko/bge-v-0.0.1")
# Run inference
sentences = [
'Nicosie',
'InputData',
'InfoAbout',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,184 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string |
| details |
I need a property with [int0] bathrooms, unfurnished, floor area of [int1], in Cyprus, with cable and WiFi internet
| InputData
| Undo
|
| Avgalida
| InputData
| Hello
|
| Στρουμπί
| InputData
| ShowByIndex
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters