|
import torch
|
|
|
|
from transformers import BertTokenizerFast
|
|
from colbert.modeling.tokenization.utils import _split_into_batches, _sort_by_length
|
|
|
|
|
|
class DocTokenizer():
|
|
def __init__(self, doc_maxlen):
|
|
self.tok = BertTokenizerFast.from_pretrained('bert-base-multilingual-uncased')
|
|
self.doc_maxlen = doc_maxlen
|
|
|
|
self.D_marker_token, self.D_marker_token_id = '[D]', self.tok.convert_tokens_to_ids('[unused1]')
|
|
self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id
|
|
self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id
|
|
|
|
assert self.D_marker_token_id == 1
|
|
|
|
def tokenize(self, batch_text, add_special_tokens=False):
|
|
assert type(batch_text) in [list, tuple], (type(batch_text))
|
|
|
|
tokens = [self.tok.tokenize(x, add_special_tokens=False) for x in batch_text]
|
|
|
|
if not add_special_tokens:
|
|
return tokens
|
|
|
|
prefix, suffix = [self.cls_token, self.D_marker_token], [self.sep_token]
|
|
tokens = [prefix + lst + suffix for lst in tokens]
|
|
|
|
return tokens
|
|
|
|
def encode(self, batch_text, add_special_tokens=False):
|
|
assert type(batch_text) in [list, tuple], (type(batch_text))
|
|
|
|
ids = self.tok(batch_text, add_special_tokens=False)['input_ids']
|
|
|
|
if not add_special_tokens:
|
|
return ids
|
|
|
|
prefix, suffix = [self.cls_token_id, self.D_marker_token_id], [self.sep_token_id]
|
|
ids = [prefix + lst + suffix for lst in ids]
|
|
|
|
return ids
|
|
|
|
def tensorize(self, batch_text, bsize=None):
|
|
assert type(batch_text) in [list, tuple], (type(batch_text))
|
|
|
|
|
|
batch_text = ['. ' + x for x in batch_text]
|
|
|
|
obj = self.tok(batch_text, padding='longest', truncation='longest_first',
|
|
return_tensors='pt', max_length=self.doc_maxlen)
|
|
|
|
ids, mask = obj['input_ids'], obj['attention_mask']
|
|
|
|
|
|
ids[:, 1] = self.D_marker_token_id
|
|
|
|
if bsize:
|
|
ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize)
|
|
batches = _split_into_batches(ids, mask, bsize)
|
|
return batches, reverse_indices
|
|
|
|
return ids, mask
|
|
|