|
import os
|
|
import ujson
|
|
import random
|
|
|
|
from colbert.utils.runs import Run
|
|
from colbert.utils.parser import Arguments
|
|
import colbert.utils.distributed as distributed
|
|
|
|
from colbert.utils.utils import print_message, create_directory
|
|
from colbert.indexing.encoder import CollectionEncoder
|
|
|
|
|
|
def main():
|
|
random.seed(12345)
|
|
|
|
parser = Arguments(description='Precomputing document representations with ColBERT.')
|
|
|
|
parser.add_model_parameters()
|
|
parser.add_model_inference_parameters()
|
|
parser.add_indexing_input()
|
|
|
|
parser.add_argument('--chunksize', dest='chunksize', default=6.0, required=False, type=float)
|
|
|
|
args = parser.parse()
|
|
|
|
with Run.context():
|
|
args.index_path = os.path.join(args.index_root, args.index_name)
|
|
assert not os.path.exists(args.index_path), args.index_path
|
|
|
|
distributed.barrier(args.rank)
|
|
|
|
if args.rank < 1:
|
|
create_directory(args.index_root)
|
|
create_directory(args.index_path)
|
|
|
|
distributed.barrier(args.rank)
|
|
|
|
process_idx = max(0, args.rank)
|
|
encoder = CollectionEncoder(args, process_idx=process_idx, num_processes=args.nranks)
|
|
encoder.encode()
|
|
|
|
distributed.barrier(args.rank)
|
|
|
|
|
|
if args.rank < 1:
|
|
metadata_path = os.path.join(args.index_path, 'metadata.json')
|
|
print_message("Saving (the following) metadata to", metadata_path, "..")
|
|
print(args.input_arguments)
|
|
|
|
with open(metadata_path, 'w') as output_metadata:
|
|
ujson.dump(args.input_arguments.__dict__, output_metadata)
|
|
|
|
distributed.barrier(args.rank)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
|