mColBERT / colbert /index.py
vjeronymo2's picture
Adding model and checkpoint
828992f
import os
import ujson
import random
from colbert.utils.runs import Run
from colbert.utils.parser import Arguments
import colbert.utils.distributed as distributed
from colbert.utils.utils import print_message, create_directory
from colbert.indexing.encoder import CollectionEncoder
def main():
random.seed(12345)
parser = Arguments(description='Precomputing document representations with ColBERT.')
parser.add_model_parameters()
parser.add_model_inference_parameters()
parser.add_indexing_input()
parser.add_argument('--chunksize', dest='chunksize', default=6.0, required=False, type=float) # in GiBs
args = parser.parse()
with Run.context():
args.index_path = os.path.join(args.index_root, args.index_name)
assert not os.path.exists(args.index_path), args.index_path
distributed.barrier(args.rank)
if args.rank < 1:
create_directory(args.index_root)
create_directory(args.index_path)
distributed.barrier(args.rank)
process_idx = max(0, args.rank)
encoder = CollectionEncoder(args, process_idx=process_idx, num_processes=args.nranks)
encoder.encode()
distributed.barrier(args.rank)
# Save metadata.
if args.rank < 1:
metadata_path = os.path.join(args.index_path, 'metadata.json')
print_message("Saving (the following) metadata to", metadata_path, "..")
print(args.input_arguments)
with open(metadata_path, 'w') as output_metadata:
ujson.dump(args.input_arguments.__dict__, output_metadata)
distributed.barrier(args.rank)
if __name__ == "__main__":
main()
# TODO: Add resume functionality