Upload sdwui-start.ipynb
Browse files- sdwui-start.ipynb +1 -0
sdwui-start.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"# [stable-diffusion-wenui v2](https://www.kaggle.com/viyiviyi/stable-diffusion-wenui-v2)\n- 支持google colab和kaggle ,在google colab时启用连接到谷歌云,可以把输出目录改为云盘地址","metadata":{"id":"IxdFNeoVLCs8"}},{"cell_type":"markdown","source":"# 路径配置 一般不用改","metadata":{"id":"CBBnogVILCs_"}},{"cell_type":"code","source":"useGooglrDrive = True # 连接到谷歌云盘 在google colab环境才能开启,开启后输出和输入目录将会变成:sdwebui/Output 和 sdwebui/Input","metadata":{"id":"swzyZ1_gLCs_","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"from pathlib import Path\nimport os\nimport time\nimport re\nimport subprocess\nimport threading\nimport sys\n\ninstall_path=f\"{os.environ['HOME']}/sdwebui\" # 安装目录\noutput_path=f\"{os.environ['HOME']}/sdwebui/Output\" # 输出目录 如果使用google云盘 会在google云盘增加sdwebui/Output\ninput_path = '/kaggle/input' # 输入目录\n\nvenvPath = '/kaggle/input/sd-webui-venv/venv.tar.bak' # 安装好的python环境 sd-webui-venv是一个公开是数据集 可以搜索添加\n\n# 用于使用kaggle api的token文件 参考 https://www.kaggle.com/docs/api\n# 此文件用于自动上传koishi的相关配置 也可以用于保存重要的输出文件\nkaggleApiTokenFile = '/kaggle/input/configs/kaggle.json'\n\ngoogle_drive = '' \n# 连接谷歌云\ntry:\n if useGooglrDrive:\n from google.colab import drive\n drive.mount(f'~/google_drive')\n #@title ### 连接到谷歌云并链接文件\n !mkdir -p ~/drive\n !ln -s -rf ~/drive/MyDrive ~/drive\n google_drive = f\"{os.environ['HOME']}/drive\"\n output_path = f'{google_drive}/sdwebui/Output'\n input_path = f'{google_drive}/sdwebui/Input'\n !mkdir -p {input_path}\nexcept:\n useGooglrDrive = False\n\n!mkdir -p {install_path}\n!mkdir -p {output_path}\n\nos.environ['install_path'] = install_path\nos.environ['output_path'] = output_path\nos.environ['google_drive'] = google_drive","metadata":{"_kg_hide-input":true,"cellView":"form","id":"fRfc6qEnLCtA","outputId":"ee8e3f3e-8319-43be-d915-df73190432e5","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# 常用配置项 (修改这里的内容后直接启动就行了 run all 或者save version都可以)\n---\n\n- 如果下载地址不是以文件名结尾的,需要指定文件名,否则不能使用\n- 常用配置 需要升级代码时备份这一个代码块 下载新的笔记直接导入,然后用复制的内容还原配置即可\n- 所有的模型列表都支持填文件、文件夹、下载地址","metadata":{"id":"TcLs4cdaLCtB"}},{"cell_type":"code","source":"# 模型列表 一行一个 可以填文件 文件夹 和下载地址,如果需要自定义文件名,在url前写上文件名加:\n模型列表 = '''\nhttps://civitai.com/api/download/models/75587\nhttps://civitai.com/api/download/models/19683\n'''\n# 启动时默认加载的模型名称\nusedCkpt = 'mg-Tender'\nVAE列表 = '''\nhttps://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.safetensors\nhttps://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors\nhttps://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt\n'''\nLora列表 = '''\nhttps://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Genshin-Impact/Yelan/Yelan_Soft.safetensors\nhttps://civitai.com/api/download/models/14856\n'''\nLyCORIS列表 = '''\nhttps://civitai.com/api/download/models/46821\nhttps://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Genshin-Impact/Ganyu/Ganyu_Medium.safetensors\n'''\nhypernetworks列表 = '''\n\n'''\nembeddings列表 = '''\n\n'''\ncontrolNet模型列表 = '''\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_canny-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_depth-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_hed-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_mlsd-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_normal-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_openpose-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_scribble-fp16.safetensors\nhttps://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_seg-fp16.safetensors\n'''\n# git仓库\n插件列表='''\nhttps://github.com/dtlnor/stable-diffusion-webui-localization-zh_CN.git\nhttps://github.com/AlUlkesh/stable-diffusion-webui-images-browser.git\nhttps://github.com/DominikDoom/a1111-sd-webui-tagcomplete.git\nhttps://github.com/Mikubill/sd-webui-controlnet.git -b lvmin\nhttps://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris.git\nhttps://github.com/LianZiZhou/sd-webui-pixink-console.git\nhttps://github.com/ilian6806/stable-diffusion-webui-state.git\nhttps://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111.git\nhttps://github.com/Bing-su/adetailer.git\n'''\n#文件或直接填配置\nngrok配置或文件地址='''\n/kaggle/input/configs/ngrok_token.txt\n'''\nfrp配置文件或配置='''\n-f **************************:7691619\n'''\n参数列表='''\n--disable-safe-unpickle \n--deepdanbooru \n--no-hashing \n--no-download-sd-model \n--administrator\n--skip-torch-cuda-test \n--skip-version-check \n--disable-nan-check\n--opt-sdp-attention \n--opt-sdp-no-mem-attention \n--xformers-flash-attention\n--xformers\n--api \n--listen\n--lowram\n--no-gradio-queue\n'''\n# --api-auth=2333:6666 --gradio-auth=2333:6666","metadata":{"id":"7tTWVxHDLCtB","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# 手机端界面优化 使用了修改过界面布局顺序的webui,不定期同步到官方版本\nmobileOptimize=True\n# webui的配置文件\nwebui_settings = 'https://github.com/viyiviyi/sd-configs.git'\n# 设置文件路径\nsetting_file = '/kaggle/working/configs/config.json'\nui_config_file = '/kaggle/working/configs/ui-config.json'\n\n#Ngrok\nuseNgrok=True # 非必填 是否使用ngrok作为公网访问地址\nngrokTokenFile = os.path.join(input_path,'configs/ngrok_token.txt') # 非必填 存放ngrokToken的文件的路径\n#Frpc\nuseFrpc=True # 开启frp将不能启动\nfrpcConfigFile = os.path.join(input_path,'configs/frpc_koishi.ini') # 非必填 frp 配置文件\n# ss证书目录 下载nginx的版本,把pem格式改成crt格式\nfrpcSSLFFlies =[os.path.join(input_path,'configs/koishi_ssl')]\n# frpc 文件目录 如果目录不存在,会自动下载,也可以在数据集搜索 viyiviyi/utils 添加\nfrpcExePath = os.path.join(input_path,'utils-tools/frpc')","metadata":{"_kg_hide-input":false,"id":"r_lBDJdOLCtB","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# 不常用配置项\n---","metadata":{"id":"6zE2QeUKLCtC"}},{"cell_type":"code","source":"# 模型目录 文件名称:链接的方式指定文件名\nmodelDirs = []+[item.strip() for item in 模型列表.split('\\n') if item.strip() ]\n# vae列表\nmodelVaeDirs = []+[item.strip() for item in VAE列表.split('\\n') if item.strip()]\n# 此配置内的目录下所有文件将加载到hypernetworks文件夹\nhypernetworksModelDirs = []+[item.strip() for item in hypernetworks列表.split('\\n') if item.strip()] \n# 此配置内的目录下所有文件将加载到embeddings文件夹\nembeddingsModelDirs = [] +[item.strip() for item in embeddings列表.split('\\n') if item.strip()]\n# 此配置内的目录下所有文件将加载到Lora文件夹\nloraModelDirs = []+[item.strip() for item in Lora列表.split('\\n') if item.strip()] \n\nlyCORISModelDirs = []+[item.strip() for item in LyCORIS列表.split('\\n') if item.strip()] \n# controlNet插件模型列表\ncontrolNetModels=[] +[item.strip() for item in controlNet模型列表.split('\\n') if item.strip()]\n# 插件列表\nextensions=[]+[item.strip() for item in 插件列表.split('\\n') if item.strip()]\n# 配置文件链接\nlinkHypernetworksDir=False # 链接 hypernetworks 目录到输出目录\nlinkEmbeddingsDir=False # 链接 embeddings 目录到输出目录\nlinkTextual_inversionDir=False # 链接 textual_inversion 目录到输出目录 如果需要保存训练过程的产出文件时建议开启\n\n# 配置启动参数\nwebuiPort=7860 # webui默认端口\ndisableShared=False # 关闭默认的gradio.live穿透\nonlyApi=False # 无ui界面,仅提供api服务\nquickStart=True # 快速启动 使用下载好的python环境 开启后启动到可用需要4分钟,不开启需要8分钟\nvaeHalf=False # vae开启半精度,关闭效果更好,对速度没啥影响\nmodelHalf=True # 模型开启半精度,关闭效果更好,但生成速度减半\nconsoleProgressbars=False # 控制台显示进度条,关闭可以减少一些输出内容,查看日志时更快一点\nconsolePrompts=False # 同上 \nenableLoadByCopy=False # 是否使用copy的方式加载文件 启动变慢,且测试后没有提高模型切换速度\nenableThread=True # 启用多线程下载插件 依赖 和 模型\n# 其他需要加载的webui启动参数 写到【参数列表】这个配置去\notherArgs = ' '.join([item.strip() for item in 参数列表.split('\\n') if item.strip()])\n","metadata":{"_kg_hide-input":true,"id":"i3LhnwYHLCtC","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# 这下面的是用于初始化一些值���者环境变量的,轻易别改\nfrpcStartArg = ''\nreLoad = True\n\n!mkdir -p $install_path/configFiles\nif Path(frp配置文件或配置.strip()).exists():\n frpcConfigFile = frp配置文件或配置.strip()\nif not Path(frpcConfigFile).exists(): \n if frp配置文件或配置.strip().startswith('-f'):\n frpcStartArg = frp配置文件或配置.strip()\n else:\n useFrpc = False\nelse:\n os.system(f'cp -f {frpcConfigFile} {install_path}/configFiles/frpc_webui.ini')\n frpcConfigFile = f'{install_path}/configFiles/frpc_webui.ini'\n os.system(f'sed -i \"s/local_port = .*/local_port = {webuiPort}/g\" {frpcConfigFile}')\n frpcStartArg = f' -c {frpcConfigFile}'\n\nngrokToken=''\nif Path(ngrok配置或文件地址.strip()).exists():\n ngrokTokenFile = ngrok配置或文件地址.strip()\nif Path(ngrokTokenFile).exists():\n with open(ngrokTokenFile,encoding = \"utf-8\") as nkfile:\n ngrokToken = nkfile.readline()\nelif not ngrok配置或文件地址.strip().startswith('/'):\n ngrokToken=ngrok配置或文件地址.strip()\n ","metadata":{"_kg_hide-input":true,"id":"a_GtG2ayLCtD","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# kaggle public API\n\n**不能使用%cd这种会改变当前工作目录的命令,会导致和其他线程冲突**\n\n---","metadata":{"id":"p0uS-BLULCtD"}},{"cell_type":"code","source":"# 安装kaggle的api token文件\ndef initKaggleConfig():\n if Path('~/.kaggle/kaggle.json').exists():\n return True\n if Path(kaggleApiTokenFile).exists():\n !mkdir -p ~/.kaggle/\n os.system('cp '+kaggleApiTokenFile+' ~/.kaggle/kaggle.json')\n !chmod 600 ~/.kaggle/kaggle.json\n return True\n print('缺少kaggle的apiToken文件,访问:https://www.kaggle.com/你的kaggle用户名/account 获取')\n return False\n\ndef getUserName():\n if not initKaggleConfig(): return\n import kaggle\n return kaggle.KaggleApi().read_config_file()['username']\n\ndef createOrUpdateDataSet(path:str,datasetName:str):\n if not initKaggleConfig(): return\n print('创建或更新数据集 '+datasetName)\n import kaggle\n os.system('mkdir -p $install_path/kaggle_cache')\n os.system('rm -rf $install_path/kaggle_cache/*')\n datasetDirPath = install_path+'/kaggle_cache/'+datasetName\n os.system('mkdir -p '+datasetDirPath)\n os.system('cp -f '+path+' '+datasetDirPath+'/')\n username = getUserName()\n print(\"kaggle username:\"+username)\n datasetPath = username+'/'+datasetName\n datasetList = kaggle.api.dataset_list(mine=True,search=datasetPath)\n print(datasetList)\n if len(datasetList) == 0 or datasetPath not in [str(d) for d in datasetList]: # 创建 create\n os.system('kaggle datasets init -p' + datasetDirPath)\n metadataFile = datasetDirPath+'/dataset-metadata.json'\n os.system('sed -i s/INSERT_TITLE_HERE/'+ datasetName + '/g ' + metadataFile)\n os.system('sed -i s/INSERT_SLUG_HERE/'+ datasetName + '/g ' + metadataFile)\n os.system('cat '+metadataFile)\n os.system('kaggle datasets create -p '+datasetDirPath)\n print('create database done')\n else:\n kaggle.api.dataset_metadata(datasetPath,datasetDirPath)\n kaggle.api.dataset_create_version(datasetDirPath, 'auto update',dir_mode='zip')\n print('upload database done')\n\ndef downloadDatasetFiles(datasetName:str,outputPath:str):\n if not initKaggleConfig(): return\n print('下载数据集文件 '+datasetName)\n import kaggle\n username = getUserName()\n datasetPath = username+'/'+datasetName\n datasetList = kaggle.api.dataset_list(mine=True,search=datasetPath)\n if datasetPath not in [str(d) for d in datasetList]:\n return False\n os.system('mkdir -p '+outputPath)\n kaggle.api.dataset_download_files(datasetPath,path=outputPath,unzip=True)\n return True\n\n","metadata":{"_kg_hide-input":true,"id":"m8FJi4j0LCtD","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# 工具函数\n**不能使用%cd这种会改变当前工作目录的命令,会导致和其他线程冲突**\n\n---","metadata":{"id":"sswa04veLCtE"}},{"cell_type":"code","source":"# 绕过 os.systen 的限制执行命令\ndef run(shell:str,shellName=''):\n if shellName == '': shellName = str(time.time())\n !mkdir -p $install_path/run_cache\n with open(install_path+'/run_cache/run_cache.'+shellName+'.sh','w') as sh:\n sh.write(shell)\n !bash {install_path}/run_cache/run_cache.{shellName}.sh\n\n# 连接多个路径字符串 让路径在shell命令中能正常的执行\ndef pathJoin(*paths:str):\n pathStr = ''\n for p in paths:\n pathStr += '\"'+p+'\"'\n pathStr = '\"*\"'.join(pathStr.split('*'))\n pathStr = '\"$\"'.join(pathStr.split('$'))\n pathStr = '\"(\"'.join(pathStr.split('('))\n pathStr = '\")\"'.join(pathStr.split(')'))\n pathStr = '\"{\"'.join(pathStr.split('{'))\n pathStr = '\"}\"'.join(pathStr.split('}'))\n pathStr = re.sub(r'\"\"','',pathStr)\n pathStr = re.sub(r'\\*{2,}','\"',pathStr)\n pathStr = re.sub(r'/{2,}','/',pathStr)\n pathStr = re.sub(r'/\\./','/',pathStr)\n return pathStr\n\n# 判断路径是不是一个文件或者可能指向一些文件\ndef pathIsFile(path):\n if Path(path).is_file():\n return True\n if re.search(r'\\.(ckpt|safetensors|png|jpg|txt|pt|pth|json|yaml|\\*)$',path):\n return True\n return False\n\ndef echoToFile(content:str,path:str):\n with open(path,'w') as sh:\n sh.write(content)\n\n# ngrok\ndef startNgrok(ngrokToken:str,ngrokLocalPort:int):\n from pyngrok import conf, ngrok\n try:\n conf.get_default().auth_token = ngrokToken\n conf.get_default().monitor_thread = False\n ssh_tunnels = ngrok.get_tunnels(conf.get_default())\n if len(ssh_tunnels) == 0:\n ssh_tunnel = ngrok.connect(ngrokLocalPort)\n print('address:'+ssh_tunnel.public_url)\n else:\n print('address:'+ssh_tunnels[0].public_url)\n except:\n print('启动ngrok出错')\n \ndef startFrpc(name,configFile):\n run(f'''\ncd $install_path/frpc/\n$install_path/frpc/frpc {configFile}\n ''',name)\n \ndef installProxyExe():\n if useFrpc:\n print('安装frpc')\n !mkdir -p $install_path/frpc\n if Path(frpcExePath).exists():\n os.system(f'cp -f -n {frpcExePath} $install_path/frpc/frpc')\n else:\n !wget \"https://huggingface.co/datasets/ACCA225/Frp/resolve/main/frpc\" -O $install_path/frpc/frpc\n \n for ssl in frpcSSLFFlies:\n if Path(ssl).exists():\n os.system('cp -f -n '+pathJoin(ssl,'/*')+' $install_path/frpc/')\n !chmod +x $install_path/frpc/frpc\n !$install_path/frpc/frpc -v\n if useNgrok:\n %pip install pyngrok\n \ndef startProxy():\n if useNgrok:\n startNgrok(ngrokToken,webuiPort)\n if useFrpc:\n startFrpc('frpc_proxy',frpcStartArg)\n\n \ndef zipPath(path:str,zipName:str,format='tar'):\n if path.startswith('$install_path'):\n path = path.replace('$install_path',install_path)\n if path.startswith('$output_path'):\n path = path.replace('$install_path',output_path)\n if not path.startswith('/'):\n path = pathJoin(install_path,'/stable-diffusion-webui','/',path)\n if Path(path).exists():\n if 'tar' == format:\n os.system('tar -cf $output_path/'+ zipName +'.tar -C '+ path +' . ')\n elif 'gz' == format:\n os.system('tar -czf $output_path/'+ zipName +'.tar.gz -C '+ path +' . ')\n return\n print('指定的目录不存在:'+path)\n","metadata":{"_kg_hide-input":true,"id":"coqQvTSLLCtE","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# 解压保存的图片\n# import zipfile\n\n# def extract_archive(archive_path, password, dest_dir):\n# with zipfile.ZipFile(archive_path) as zf:\n# zf.extractall(path=dest_dir, pwd=password.encode())\n \n# def create_archive(source_path, password, archive_path):\n# with zipfile.ZipFile(archive_path, mode='w', compression=zipfile.ZIP_DEFLATED) as zf:\n# for root, dirs, files in os.walk(source_path):\n# for file in files:\n# file_path = os.path.join(root, file)\n# zf.write(file_path, arcname=os.path.relpath(file_path, source_path), compress_type=zipfile.ZIP_DEFLATED)\n# zf.setpassword(password.encode())\n\n# unzip_save():\n# if Path('/kaggle/working/output/log.zip').exists():\n# extract_archive('/kaggle/working/output/log.zip',加密密码.strip(),f'{install_path}/stable-diffusion-webui/log')\n\n# save_to_zip():\n# if Path('/kaggle/working/output/log.zip').exists():\n \n","metadata":{"_kg_hide-input":true,"jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"import os\nimport re\nimport requests\n\ndef download_file(url, filename, path):\n # 获取文件的真实文件名\n if not filename:\n with requests.get(url, stream=True) as r:\n if 'Content-Disposition' in r.headers:\n filename = r.headers['Content-Disposition'].split('filename=')[1].strip('\"')\n r.close()\n filename = re.sub(r'[\\\\/:*?\"<>|;]', '', filename)\n # 拼接文件的完整路径\n filepath = os.path.join(path, filename)\n # 判断文件是否已存在\n if os.path.exists(filepath):\n print(f'{filename} already exists in {path}')\n return\n # 下载文件\n with requests.get(url, stream=True) as r:\n r.raise_for_status()\n with open(filepath, 'wb') as f:\n for chunk in r.iter_content(chunk_size=8192):\n if chunk:\n f.write(chunk)\n print(f'{filename} has been downloaded to {path}')\n \n# 加入文件到下载列表\ndef putDownloadFile(url:str,distDir:str,file_name:str=None):\n if re.match(r'^[^:]+:(https?|ftps?)://', url, flags=0):\n file_name = re.findall(r'^[^:]+:',url)[0][:-1]\n url = url[len(file_name)+1:]\n if not re.match(r'^(https?|ftps?)://',url):\n return\n file_name = re.sub(r'\\s+','_',file_name or '')\n dir = str(hash(url)).replace('-','')\n down_dir = f'{install_path}/down_cache/{dir}'\n !mkdir -p {down_dir}\n return [url,file_name,distDir,down_dir]\n\ndef get_file_size_in_gb(file_path):\n size_in_bytes = Path(file_path).stat().st_size\n size_in_gb = size_in_bytes / (1024 ** 3)\n return '%.2f' % size_in_gb\n \n# 下载文件\ndef startDownloadFiles(download_list):\n print('下载列表:\\n','\\n'.join([f'{item[0]} -> {item[2]}/{item[1]}' for item in download_list]))\n dist_list = []\n for dow_f in download_list:\n !mkdir -p {dow_f[3]}\n print('下载 名称:',dow_f[1],'url:',dow_f[0])\n download_file(dow_f[0],dow_f[1],dow_f[2])","metadata":{"_kg_hide-input":true,"id":"THNUsEm_LCtE","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# webui 安装和配置函数\n---","metadata":{"id":"Ve3p8oOkLCtE"}},{"cell_type":"code","source":"envInstalled=False\nextensionsDone=False\n\n#安装webui\ndef install():\n print('安装webui')\n %cd $install_path\n if reLoad:\n !rm -rf stable-diffusion-webui\n if Path(\"stable-diffusion-webui\").exists():\n %cd $install_path/stable-diffusion-webui/\n !git checkout .\n !git pull\n else:\n if mobileOptimize:\n !git clone https://github.com/viyiviyi/stable-diffusion-webui.git stable-diffusion-webui -b local # 修改了前端界面,手机使用更方便\n else:\n !git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui stable-diffusion-webui\n print('安装webui 完成')\n\n# 链接输出目录\ndef link_dir():\n print('链接输出目录')\n # 链接输出目录 因为sd被部署在了stable-diffusion-webui目录,运行结束后为了方便下载就只有outputs目录放在output_path/目录下\n !mkdir -p $output_path/outputs\n !rm -rf $install_path/stable-diffusion-webui/outputs\n !ln -s -r $output_path/outputs $install_path/stable-diffusion-webui/ # 输出目录\n !mkdir -p $output_path/log\n !rm -rf $install_path/stable-diffusion-webui/log\n !ln -s -r $output_path/log $install_path/stable-diffusion-webui/\n # 链接 hypernetworks 目录\n if linkHypernetworksDir:\n !rm -rf $install_path/stable-diffusion-webui/models/hypernetworks\n !mkdir -p $output_path/hypernetworks\n !ln -s -r $output_path/hypernetworks $install_path/stable-diffusion-webui/models/\n # 链接 embeddings 目录\n if linkEmbeddingsDir:\n !rm -rf $install_path/stable-diffusion-webui/embeddings\n !mkdir -p $output_path/embeddings\n !ln -s -r $output_path/embeddings $install_path/stable-diffusion-webui/\n # 链接训练输出目录 文件夹链接会导致功能不能用\n if linkTextual_inversionDir:\n !rm -rf $install_path/stable-diffusion-webui/textual_inversion\n !mkdir -p $output_path/textual_inversion/\n !ln -s -r $output_path/textual_inversion $install_path/stable-diffusion-webui/\n print('链接输出目录 完成')\n \n# 链接模型文件\ndef load_models(skip_url=False):\n print(('复制' if enableLoadByCopy else '链接') + '模型文件')\n if enableLoadByCopy:\n print('如果出现 No such file or directory 错误,可以忽略')\n download_list = []\n models_dir_path = f'{install_path}/stable-diffusion-webui/models/Stable-diffusion'\n hypernetworks_dir_path = f'{install_path}/stable-diffusion-webui/models/hypernetworks'\n embeddings_dir_path = f'{install_path}/stable-diffusion-webui/models/embeddings'\n lora_dir_path = f'{install_path}/stable-diffusion-webui/models/Lora'\n lycoris_dir_path = f'{install_path}/stable-diffusion-webui/models/LyCORIS'\n vae_dir_path = f'{install_path}/stable-diffusion-webui/models/VAE'\n control_net_dir_path = f'{install_path}/stable-diffusion-webui/extensions/sd-webui-controlnet/models'\n \n def link_file(source_paths,dist:str):\n !mkdir -p {dist}\n for path in source_paths:\n if 'https://' in path or 'http://' in path:\n if skip_url:\n continue\n download_list.append(putDownloadFile(path,dist))\n elif pathIsFile(path):\n os.system(('cp -n' if enableLoadByCopy else 'ln -s')+' -f '+ pathJoin(path) +f' {dist}')\n else:\n os.system(('cp -n' if enableLoadByCopy else 'ln -s')+' -f '+ pathJoin(path,'/*.*') +f' {dist}')\n !rm -f {dist}/\\*.* \n \n link_file(modelDirs,models_dir_path)\n link_file(hypernetworksModelDirs,hypernetworks_dir_path)\n link_file(embeddingsModelDirs,embeddings_dir_path)\n link_file(loraModelDirs,lora_dir_path)\n link_file(lyCORISModelDirs,lycoris_dir_path)\n link_file(modelVaeDirs,vae_dir_path)\n link_file(controlNetModels,control_net_dir_path)\n startDownloadFiles([item for item in download_list if item])\n print(('复制' if enableLoadByCopy else '链接') + '模型文件 完成')\n\n#安装依赖\ndef install_dependencies():\n print('安装webui需要的python环境')\n global envInstalled\n sh = f'cd {install_path}/stable-diffusion-webui\\n'\n if str(sys.version).startswith('3.8') or str(sys.version).startswith('3.9') or str(sys.version).startswith('3.10'):\n sh += '''\npython3 -m venv venv\n'''\n else:\n sh += '''\nadd-apt-repository ppa:deadsnakes/ppa -y\napt update\napt install python3.10 -y\npython3.10 -m venv venv\n'''\n if quickStart and Path(venvPath).exists():\n sh += 'echo \"unzip venv\"\\n'\n sh += f'tar -xf {venvPath} -C ./venv\\n'\n sh += '\\n'\n run(sh,'dependencies')\n if not Path(f'{install_path}/stable-diffusion-webui/venv/bin/pip').exists():\n !curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py\n !{install_path}/stable-diffusion-webui/venv/bin/python3 get-pip.py\n \n !{install_path}/stable-diffusion-webui/venv/bin/python3 -V\n !{install_path}/stable-diffusion-webui/venv/bin/python3 -m pip -V\n \n if not quickStart or not Path(venvPath).exists():\n !{install_path}/stable-diffusion-webui/venv/bin/python3 -m pip install -U torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117\n !{install_path}/stable-diffusion-webui/venv/bin/python3 -m pip install -U open-clip-torch xformers==0.0.19\n \n envInstalled = True\n print('安装webui需要的python环境 完成')\n\n# 安装插件\ndef install_extensions():\n global extensionsDone\n print('安装插件')\n sh = 'mkdir -p $install_path/stable-diffusion-webui/extensions \\n'\n sh = 'mkdir -p $install_path/cache/extensions \\n'\n sh += 'cd $install_path/cache/extensions \\n'\n for ex in extensions:\n sh += 'git clone ' + ex + ' \\n'\n sh += 'rsync -a $install_path/cache/extensions/* $install_path/stable-diffusion-webui/extensions \\n'\n sh += 'cd ../ && rm -rf $install_path/cache/extensions \\n'\n run(sh,'extensions')\n extensionsDone = True\n print('安装插件 完成')\n \n# 个性化配置 \ndef use_config():\n print('使用自定义配置 包括tag翻译 \\n')\n %cd $install_path/stable-diffusion-webui\n !mkdir -p tmp\n %cd tmp\n !git clone {webui_settings} sd-configs\n !cp -rf sd-configs/dist/* $install_path/stable-diffusion-webui\n if not Path(ui_config_file).exists(): # ui配置文件\n !mkdir -p {ui_config_file[0:ui_config_file.rfind('/')]}\n os.system('cp -f -n $install_path/stable-diffusion-webui/ui-config.json '+ui_config_file)\n if not Path(setting_file).exists(): # 设置配置文件\n !mkdir -p {setting_file[0:setting_file.rfind('/')]}\n os.system('cp -f -n $install_path/stable-diffusion-webui/config.json '+setting_file)\n\ndef checkDefaultModel():\n print('检查默认模型文件是否存在 \\n')\n global usedCkpt\n if usedCkpt is not None and usedCkpt != '': # 设置启动时默认加载的模型\n if '.' in usedCkpt:\n if '/' in usedCkpt:\n usedCkpt = usedCkpt\n else:\n usedCkpt = install_path + '/stable-diffusion-webui/models/Stable-diffusion/' + usedCkpt\n else:\n for x in ['.ckpt','.safetensors']:\n if Path(install_path+'/stable-diffusion-webui/models/Stable-diffusion/' + usedCkpt+x).exists():\n usedCkpt = install_path+'/stable-diffusion-webui/models/Stable-diffusion/' + usedCkpt+x\n break\n if Path(usedCkpt).exists():\n return True\n else:\n if Path(usedCkpt).is_symlink():\n print('模型文件真实地址:'+os.readlink(usedCkpt))\n return False\n\n# 启动\ndef start():\n print('启动webui')\n %cd $install_path/stable-diffusion-webui\n args = ' --port=' + str(webuiPort)\n if not disableShared:\n args += ' --share'\n if onlyApi:\n args += ' --nowebui'\n if ui_config_file is not None and ui_config_file != '' and Path(ui_config_file).exists(): # ui配置文件\n args += ' --ui-config-file=' + pathJoin(ui_config_file)\n if setting_file is not None and setting_file != '' and Path(setting_file).exists(): # 设置配置文件\n args += ' --ui-settings-file=' + pathJoin(setting_file)\n if not checkDefaultModel():\n print('默认模型文件不存在,请检查配置:'+usedCkpt)\n else:\n args += ' --ckpt='+ pathJoin(usedCkpt)\n if vaeHalf is False: \n args += ' --no-half-vae'\n if modelHalf is False:\n args += ' --no-half'\n if consoleProgressbars is False:\n args += ' --disable-console-progressbars'\n if consolePrompts is True:\n args += ' --enable-console-prompts'\n args += ' ' + otherArgs\n os.environ['COMMANDLINE_ARGS']=args\n !echo COMMANDLINE_ARGS=$COMMANDLINE_ARGS\n %env REQS_FILE=requirements.txt\n # 只要不爆内存,其他方式关闭后会再次重启 访问地址会发生变化\n if useFrpc:\n while True:\n !venv/bin/python3 launch.py\n print('5秒后重启webui')\n time.sleep(5)\n else:\n !venv/bin/python3 launch.py\n ","metadata":{"_kg_hide-input":true,"id":"GTjyBJihLCtE","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# 入口函数\n---","metadata":{"id":"qLvsk8ByLCtF"}},{"cell_type":"code","source":"# 启动非webui相关的的内容,加快启动速度\ndef main():\n global envInstalled\n global extensionsDone\n startTicks = time.time()\n isInstall = True if os.getenv('IsInstall','False') == 'True' else False\n if isInstall is False or reLoad: \n install()\n if enableThread:\n threading.Thread(target = install_extensions,daemon=True).start()\n threading.Thread(target = load_models,daemon=True).start()\n threading.Thread(target = install_dependencies,daemon=True).start()\n else:\n install_extensions()\n load_models()\n install_dependencies()\n t = 0\n while not envInstalled or not extensionsDone:\n if t%10==0:\n print('等待python环境和插件安装...')\n t = t+1\n time.sleep(1)\n link_dir()\n use_config()\n installProxyExe()\n threading.Thread(target = startProxy,daemon=True).start()\n os.environ['IsInstall'] = 'True'\n else:\n envInstalled = True\n extensionsDone = True\n load_models(True)\n ticks = time.time()\n print(\"加载耗时:\",(ticks - startTicks),\"秒\")\n start()\n","metadata":{"_kg_hide-input":true,"id":"IOKjaMlcLCtF","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"# 执行区域\n---","metadata":{"id":"0oaCRs2gLCtF"}},{"cell_type":"code","source":"# 如果需要重新安装,请注释这一行\nreLoad = False\n# 启动\nmain()\n# 打包收藏文件夹 如果需要可以取消下面两行的注释\n# zipPath('$install_path/stable-diffusion-webui/log','log')\n# !mv {output_path}/log.tar {output_path}/log.tar.bak\n# createOrUpdateDataSet(f'{output_path}/log.tar.bak','sd-webui-log-bak')","metadata":{"_kg_hide-output":true,"id":"O3DR0DWHLCtF","scrolled":true,"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# 打包 这一行的结果是 压缩一个目录,并放在 output_path: /kaggle/working/ 目录下 名字是训练输出.tar\n# zipPath('$install_path/stable-diffusion-webui/textual_inversion','训练输出') \n# zipPath('$install_path/stable-diffusion-webui/outputs','outputs')\n# zipPath('$install_path/stable-diffusion-webui/venv','venv')\n# !mv {output_path}/venv.tar /kaggle/working/venv.tar.bak\n# createOrUpdateDataSet('/kaggle/working/venv.tar.bak','sd-webui-venv')\n# !tar -cf $output_path/webui.tar.bak --exclude=venv --exclude=extensions -C /kaggle/stable-diffusion-webui/ .","metadata":{"id":"ePT_b-s9LCtF","scrolled":true,"trusted":true},"execution_count":null,"outputs":[]}]}
|